視覺不論對生物界還是人類,都起到了至關重要的作用。隨著人工智能浪潮的大勢來襲,包括機器視覺、計算機視覺等在內的智能視覺也在人工智能領域逐步扮演著越來越重要的角色。
智能視覺涉及心理物理學、計算機科學、圖像處理、模式識別、神經生物學等諸多領域,主要指利用計算機來模擬人或再現(xiàn)與人類有關的某些智能行為的技術,客觀的來說,這是從事物的圖像中提取信息進行處理并加以理解,從而最終用于實際的生產生活中去的過程。
由此可見,圖像分析是智能視覺中最為重要的一環(huán)。圖像分析與圖像處理關系密切,兩者有一定程度的交叉,但是又有所不同。
圖像分析更側重點在于研究圖像的內容,包括但不局限于使用圖像處理的各種技術,它更傾向于對圖像內容的分析、解釋、和識別;而圖像處理側重于信號處理方面的研究,如圖像對比度的調節(jié)、圖像編碼、去噪以及濾波的研究。
圖像分析和計算機科學領域中的模式識別、計算機視覺關系更密切一些。概括地說,圖像分析一般利用數(shù)學模型并結合圖像處理的技術來分析底層特征和上層結構,從而提取具有一定智能性的信息。
圖像分析要求我們人類教會計算機識別物品,我們把一類物品的大量圖片丟給計算機,讓計算機去識別它,然后我們根據(jù)不同物品的不同特點建立簡單的幾何模型,比如一些矩形、三角形、圓形等的組合,從而讓計算機更好地識別出不同物品。
然而,實際操作的結果與上述的原理出現(xiàn)了很大的偏差,因為在現(xiàn)實世界中同種物品也大多有著不同的形態(tài)。比如一個杯子,它的形狀可以是圓柱狀的、立方體的、不規(guī)則形狀的等等,如果按照上述的原理進行圖像分析的話,那我們需要為所有杯子設計出對應的模型來教給計算機如何去識別“杯子”這一生活中簡單的物品,顯然這是不可能完成的任務。
所以后來,科學家們從孩子們學習的過程中獲得了靈感。孩子的父母在教育孩子認識“杯子”的時候并沒有告訴孩子如何去構建一個杯子的幾何模型,孩子們學會認識“杯子”是什么物品是依靠經驗來學習的。于是,科學家們用機器學習的方式來處理這個問題,而其中很重要的技術在于“卷積神經網(wǎng)絡”。
“卷積神經網(wǎng)絡”是一個多層的神經網(wǎng)絡,與其他深度學習網(wǎng)絡最大的區(qū)別是擁有可以與二維數(shù)據(jù)直接卷積操作的卷積層。卷積神經網(wǎng)絡的優(yōu)點是能夠直接與圖像像素進行卷積,從圖像像素中提取圖像特征,這種處理方式更加接近人類大腦視覺系統(tǒng)的處理方式 。
卷積神經網(wǎng)絡的基本網(wǎng)絡結構可以分為四個部分:輸入層、卷積層、全連接層和輸出層。在利用卷積神經網(wǎng)絡進行圖像分析的過程中,首先將圖片分解為部分重復的小區(qū)域,卷積神經網(wǎng)絡中的小神經元集合與輸入圖像的一個小區(qū)域相連,也就是相當于把每一個小區(qū)域都輸入到神經網(wǎng)絡中來識別。
這樣做的好處是集合有重疊的平鋪開來,網(wǎng)絡中的每一層都重復同樣的過程,所以網(wǎng)絡能夠容忍輸入圖像的一定程度上的變形。然后對輸入的圖像鄰域進行卷積處理得到圖像的鄰域特征圖,再通過池化技術將小鄰域內進行下采樣過程從而得到新的特征。
如此一來,我們就將一個圖片縮減成了較小的序列,最后我們再將這個數(shù)列輸入到另外的一個“完全連接”神經網(wǎng)絡中,這個網(wǎng)絡決定圖片是否匹配。所以整個過程經過卷積化、最大池化、“完全連接”神經網(wǎng)絡,結合實際問題我們可以決定卷積、最大池化的次數(shù),卷積層增多有助于識別更加復雜的特征,調用最大池化函數(shù)有助于縮小數(shù)據(jù)大小。近年來卷積神經網(wǎng)絡在圖像分析領域得到了廣闊的應用。
隨著科技的高速發(fā)展,視覺智能領域的圖像分析過程也越來越充滿挑戰(zhàn)性,卷積神經網(wǎng)絡的出現(xiàn)解決了傳統(tǒng)處理方式中出現(xiàn)的問題。
伴隨著人工神經網(wǎng)絡的不斷發(fā)展,人工智能的視覺智能在未來將更加高效、準確,不斷進步的圖像分析過程也將為人工智能的發(fā)展帶來巨大優(yōu)勢,因此,我們絕對有理由相信,未來的人工智能將不斷為人類帶來驚喜。
編輯:jq
-
圖像處理
+關注
關注
27文章
1295瀏覽量
56805 -
計算機
+關注
關注
19文章
7519瀏覽量
88216 -
智能視覺
+關注
關注
0文章
102瀏覽量
9226
原文標題:智能視覺中的圖像分析過程
文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論