0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)圖像識(shí)別_卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)勢(shì)

姚小熊27 ? 來源:創(chuàng)云科技.CSDN ? 作者:創(chuàng)云科技.CSDN ? 2021-05-13 14:13 ? 次閱讀

卷積神經(jīng)網(wǎng)絡(luò)圖像識(shí)別

機(jī)器視覺的概念中,圖像識(shí)別是指軟件具有分辨圖片中的人物、位置、物體、動(dòng)作以及筆跡的能力。計(jì)算機(jī)可以應(yīng)用機(jī)器視覺技巧,結(jié)合人工智能以及攝像機(jī)來進(jìn)行圖像識(shí)別。

根據(jù)神經(jīng)網(wǎng)絡(luò)的構(gòu)建方式,一個(gè)相對(duì)簡單的改變就可以讓較大的圖像變得更好處理。改變的結(jié)果就是我們所見到的卷積神經(jīng)網(wǎng)絡(luò)(CNNs,ConvNets)。

神經(jīng)網(wǎng)絡(luò)的廣適性是他們的優(yōu)點(diǎn)之一,但是在處理圖像時(shí),這個(gè)優(yōu)點(diǎn)就變成了負(fù)擔(dān)。卷積神經(jīng)網(wǎng)絡(luò)對(duì)此專門進(jìn)行了折衷:如果一個(gè)網(wǎng)絡(luò)專為處理圖像而設(shè)計(jì),有些廣適性需要為更可行的解決方案做出讓步。

對(duì)于任意圖像,像素之間的距離與其相似性有很強(qiáng)的關(guān)系,而卷積神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)正是利用了這一特點(diǎn)。這意味著,對(duì)于給定圖像,兩個(gè)距離較近的像素相比于距離較遠(yuǎn)的像素更為相似。然而,在普通的神經(jīng)網(wǎng)絡(luò)中,每個(gè)像素都和一個(gè)神經(jīng)元相連。在這種情況下,附加的計(jì)算負(fù)荷使得網(wǎng)絡(luò)不夠精確。

卷積神經(jīng)網(wǎng)絡(luò)通過消除大量類似的不重要的連接解決了這個(gè)問題。技術(shù)上來講,卷積神經(jīng)網(wǎng)絡(luò)通過對(duì)神經(jīng)元之間的連接根據(jù)相似性進(jìn)行過濾,使圖像處理在計(jì)算層面可控。對(duì)于給定層,卷積神經(jīng)網(wǎng)絡(luò)不是把每個(gè)輸入與每個(gè)神經(jīng)元相連,而是專門限制了連接,這樣任意神經(jīng)元只能接受來自前一層的一小部分的輸入(例如3*3或5*5)。因此,每個(gè)神經(jīng)元只需要負(fù)責(zé)處理一張圖像的一個(gè)特定部分。(順便提一下,這基本就是人腦的獨(dú)立皮質(zhì)神經(jīng)元工作的方式。每個(gè)神經(jīng)元只對(duì)完整視野的一小部分進(jìn)行響應(yīng))。

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)勢(shì)

卷積神經(jīng)網(wǎng)絡(luò)是在Hub等人對(duì)貓的視覺皮層中細(xì)胞的研究基礎(chǔ)上,通過擬生物大腦皮層構(gòu)而特殊設(shè)計(jì)的含有多隱層的人工神經(jīng)網(wǎng)絡(luò)。卷積層、池化層、激活函數(shù)是卷積神經(jīng)網(wǎng)路的要組部分。卷積神經(jīng)網(wǎng)絡(luò)通過局部感受野、權(quán)重共享和降采樣3種策略,降低了網(wǎng)絡(luò)模型的復(fù)雜度,同時(shí)對(duì)于平移、旋轉(zhuǎn)、尺度縮放等形式的變有度的不變性。因此被廣泛應(yīng)用于圖像分類、目標(biāo)識(shí)別、語音識(shí)別等領(lǐng)域一般情況下,常見的卷積神經(jīng)網(wǎng)絡(luò)由輸入層、卷積層、激活層、池化層、全連接層和最后的輸出層構(gòu)成。

卷積神經(jīng)網(wǎng)絡(luò)采用原始圖像作為輸入, 可以有效的從大量樣本中學(xué)習(xí)到相應(yīng)地特征, 避免了復(fù)雜的特征提取過程。由于卷積神經(jīng)網(wǎng)絡(luò)(CNN) 可以直接對(duì)二維圖像進(jìn)行處理, 因此, 在圖像處理方面得到了廣泛的應(yīng)用, 并取得了較多的研究成果。該網(wǎng)絡(luò)通過簡單的非線性模型從原始圖像中提取出更加抽象的特征,并且在整個(gè)過程中只需少量的人工參與。

卷積神經(jīng)網(wǎng)絡(luò)具有局部感知和參數(shù)共享兩個(gè)特點(diǎn),局部感知即卷積神經(jīng)網(wǎng)絡(luò)提出每個(gè)神經(jīng)元不需要感知圖像中的全部像素,只對(duì)圖像的局部像素進(jìn)行感知,然后在更高層將這些局部的信息進(jìn)行合并,從而得到圖像的全部表征信息。不同層的神經(jīng)單元采用局部連接的方式,即每一層的神經(jīng)單元只與前一層部分神經(jīng)單元相連。每個(gè)神經(jīng)單元只響應(yīng)感受野內(nèi)的區(qū)域,完全不關(guān)心感受野之外的區(qū)域。這樣的局部連接模式保證了學(xué)習(xí)到的卷積核對(duì)輸入的空間局部模式具有最強(qiáng)的響應(yīng)。權(quán)值共享網(wǎng)絡(luò)結(jié)構(gòu)使之更類似于生物神經(jīng)網(wǎng)絡(luò),降低了網(wǎng)絡(luò)模型的復(fù)雜度,減少了權(quán)值的數(shù)量。這種網(wǎng)絡(luò)結(jié)構(gòu)對(duì)平移、比例縮放、傾斜或者共他形式的變形具有高度不變性。而且卷積神經(jīng)網(wǎng)絡(luò)采用原始圖像作為輸入,可以有效的從大量樣本中學(xué)習(xí)到相應(yīng)地特征,避免了復(fù)雜的特征提取過程。

責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?438次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用場(chǎng)景及優(yōu)缺點(diǎn)

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNNs)是一種深度學(xué)習(xí)架構(gòu),它在圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域有著廣泛的應(yīng)用。 一、卷積
    的頭像 發(fā)表于 07-11 14:45 ?733次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)有何用途 卷積神經(jīng)網(wǎng)絡(luò)通常運(yùn)用在哪里

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理、生物信息學(xué)等領(lǐng)域。本文將介紹卷積
    的頭像 發(fā)表于 07-11 14:43 ?2387次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點(diǎn)

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)算法,它在圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域有著廣泛的應(yīng)用。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-11 14:38 ?1063次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-03 10:49 ?553次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和工作原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-03 09:38 ?639次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)激活函數(shù)的作用

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)是深度學(xué)習(xí)中一種重要的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),廣泛應(yīng)用于圖像識(shí)別、語音識(shí)
    的頭像 發(fā)表于 07-03 09:18 ?1098次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-03 09:15 ?412次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實(shí)現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。 卷積
    的頭像 發(fā)表于 07-02 16:47 ?581次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理和應(yīng)用范圍

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、語音識(shí)別、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹
    的頭像 發(fā)表于 07-02 15:30 ?1213次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)及其功能

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-02 14:45 ?2103次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、語音識(shí)別、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹
    的頭像 發(fā)表于 07-02 14:44 ?655次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)圖像識(shí)別中的應(yīng)用

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。 1. 卷積
    的頭像 發(fā)表于 07-02 14:28 ?1145次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理、結(jié)構(gòu)及訓(xùn)練過程

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)算法,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-02 14:21 ?2606次閱讀

    神經(jīng)網(wǎng)絡(luò)圖像識(shí)別中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)圖像識(shí)別領(lǐng)域的應(yīng)用日益廣泛。神經(jīng)網(wǎng)絡(luò)以其強(qiáng)大的特征提取和分類能力,為圖像識(shí)別帶來了革命性的進(jìn)步。本文將詳細(xì)介紹
    的頭像 發(fā)表于 07-01 14:19 ?683次閱讀