0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

簡述圖像的測量之投影與紋理

新機器視覺 ? 來源:CSDN技術(shù)社區(qū) ? 作者:ReWz ? 2021-04-26 14:34 ? 次閱讀

一、投影

水平投影有什么作用呢?

可以起到一個定位的作用,比如說,我們想要定位車牌號。我們把圖像處理之后,用垂直投影,可以很快的對其進行定位以即分割

水平投影的實現(xiàn)步驟

圖像二值化,物體為黑,背景為白。

循環(huán)各行,依次判斷每一列的像素是否為黑,統(tǒng)計所有黑像素的個數(shù)。設(shè)該行共有M個黑像素,則把該行從第一列到第M列設(shè)置為黑

垂直投影的實現(xiàn)步驟

圖像二值化,物體為黑,背景為白。

循環(huán)各列,依次判斷每一行的像素是否為黑,統(tǒng)計所有黑像素的個數(shù)。設(shè)該列共有M個黑像素,則把該列從第一行到第M行設(shè)置為黑

效果圖如下

水平投影效果如下

二、紋理分析

什么是紋理呢?

紋理就是指在圖像中反復(fù)出現(xiàn)的局部模式和他們的排列規(guī)則

紋理特征反應(yīng)了物體本身的屬性,有助于將兩種不同的物理分開來

通過對圖像的紋理分析獲得關(guān)于景物紋理特征和結(jié)構(gòu)的定景分析描述和解釋。這就是圖像紋理分析的任務(wù)。

紋理是圖像的像素灰度級或者顏色的某種變化,反復(fù)出現(xiàn)紋理基元和它的排列規(guī)則。而且這種變化是空間排列的

紋理是由紋理級元組測而成的

那什么是紋理分析呢?

紋理分析是指通過圖像處理技術(shù)抽取出紋理特征,獲得紋理的定量或者定性描述的處理過程,獲得紋理的定量或者定性描述的處理過程,它首先從像素觸發(fā),檢測出紋理基元,找出紋理基元排列的信息,建立紋理基元的模型,通過紋理分析獲取紋理基元的排列信息及分布信息

紋理分析的基礎(chǔ)方法

統(tǒng)計方法

1. 空間域:基于統(tǒng)計圖像像素灰度級的分布狀況,利用直方圖

2. 頻域:通過傅里葉變換將圖像變換到頻率域然后抽取相應(yīng)的象征量

結(jié)構(gòu)方法:用于印刷或者版畫樣等一類紋理基元及其排列比較規(guī)則的圖像

直方圖統(tǒng)計特征分析法

大體步驟如下

1. 對于一副圖像,選擇合適的領(lǐng)域大小

2. 對每個像素,計算出其領(lǐng)域中的灰度直方圖

3. 比較求出的直方圖與已知的各種紋理基元的直方圖之間的相似性。

4. 若相似,說明存在已知的紋理基元

如何判斷直方圖的相似性呢?

均值方差法

求出兩個圖像直方圖的均值和方差,如果兩幅圖像的均值和方差相差均在閾值之內(nèi),則說明兩個直方圖是相似的。

直方圖的均值:所有像素值相加除以像素個數(shù)

直方圖的方差:每一個顏色減去均值的平方,再乘以顏色的個數(shù)再除以總個數(shù)。

算法實現(xiàn)起來非常簡單

Python

def Texture_1(img1,img2):

def getStatic(img):

static=np.zeros(shape=256,dtype=int)

for y in range(0,len(img)):

for x in range(0,len(img[y])):

c=img[y,x,0]

static[c]=static[c]+1

return static

# 先統(tǒng)計直方圖

static1=getStatic(img1)

static2=getStatic(img2)

s1=0

s2=0

#再計算直方圖的平均灰度

for i in range(0,256):

s1=s1+static1[i]*i

s2=s2=static2[i]*i

avg1=s1/(len(img1)*len(img1[0]))

avg2 = s2 / (len(img2) * len(img2[0]))

#再計算方差

for c in range(0,256):

t1=(c-avg1)*static1[c]

t2=(c-avg2)*static2[c]

t1=t1/(len(img1)*len(img1[0]))

t2=t2/(len(img2)*len(img2[0]))

return np.abs(t1-t2)

Kolmogorov-Smirnov檢測法

對于兩幅圖像,分別求出其累計直方圖,然后取其累計直方圖差值的最大值

H(z)=int_{0}^{Z}h(x)dxH(z)=∫0Zh(x)dx

KS=max|H_1(z)-H_2(Z)|KS=max∣H1(z)?H2(Z)∣

然后再求出直方圖之間差值的的和值,為SD

SD=sum h_1(z)-h_2(z)SD=∑h1(z)?h2(z)

如果|KS-SD|∣KS?SD∣在閾值之內(nèi),則相似

Python

def Texture_2(img1,img2):

#下面是用來求一副圖像的直方圖

def getStatic(img):

static=np.zeros(shape=256,dtype=int)

for y in range(0,len(img)):

for x in range(0,len(img[y])):

c=img[y,x,0]

static[c]=static[c]+1

return static

#下面的函數(shù)是用來求一副圖像的累計直方圖

def getStatic1(img):

static=np.zeros(shape=256,dtype=int)

for y in range(0,len(img)):

for x in range(0,len(img[y])):

c=img[y,x,0]

static[c]=static[c]+1

if c》0:

static[c]=static[c]+static[c-1]

return static

static1=getStatic(img1)

static2=getStatic(img2)

# 用來參數(shù)KS

KS=np.max(static1-static2)

# 用來求參數(shù)SD

SD=np.sum((getStatic(img1)-getStatic(img2)),axis=0)

return np.abs(KS-SD)

邊緣方向直方圖分析法

灰度級直方圖不能反應(yīng)圖像的二維灰度變化,圖像邊緣包含有大量的二維信息,取沿著邊緣走向的像素的領(lǐng)域,分析其直方圖,若在直方圖上的某一個灰度范圍內(nèi)有尖峰,可以說明在這個范圍內(nèi),紋理具有方向性。因此,單純的分析邊緣方向的直方圖可以得到一些紋理信息

圖像自相關(guān)函數(shù)分析法

P(x,y)=frac{sum_{i=0}sum_{j=0}f(i,j)f(i+x,j+y)}{sum_{i=0}sum_{j=0} f(i,j)} d=(x^2+y^2)^{frac{1}{2}}P(x,y)=∑i=0∑j=0f(i,j)∑i=0∑j=0f(i,j)f(i+x,j+y)d=(x2+y2)21利用p(x,y)隨著x,y大小而變化的規(guī)律可以找到描述圖像的紋理特征。

自相關(guān)函數(shù)隨著x、y大小而變化,與圖像紋理粗細(xì)的變化有者對應(yīng)的關(guān)系,如果紋理比較粗,則P(x,y)隨著d增加而下降速度較慢,如果紋理比較細(xì),則隨著d增加而下降速度較快

灰度共生矩陣特征分析法

因為灰度級直方圖分析法無法反應(yīng)出像素之間灰度級空間相關(guān)性的規(guī)律。所以是有一定缺陷的,而灰度共生矩陣特征分析法,很好點的解決了這個問題。

相鄰某一間隔的兩個像素,他們之間要么具有相同的灰度級,要么具有不相同的灰度級,如果能找到這樣兩個像素的聯(lián)合分布的統(tǒng)計形式,對于圖像的紋理分析很有意義

灰度-梯度共生矩陣分析法

將其灰度進行正規(guī)化處理

利用梯度算子,可以得到梯度圖像

經(jīng)過正規(guī)化處理,可以得到兩個正規(guī)化矩陣:灰度矩陣、梯度矩陣

正規(guī)化處理

每個像素乘以它的灰度值的個數(shù),然后除以最大值

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 投影
    +關(guān)注

    關(guān)注

    0

    文章

    143

    瀏覽量

    24714
  • 函數(shù)
    +關(guān)注

    關(guān)注

    3

    文章

    4333

    瀏覽量

    62721
  • 紋理
    +關(guān)注

    關(guān)注

    0

    文章

    7

    瀏覽量

    6745
收藏 人收藏

    評論

    相關(guān)推薦

    圖像尺寸測量儀在人造骨骼尺寸測量中的創(chuàng)新應(yīng)用

    圖像尺寸測量儀的出現(xiàn)為人造骨骼尺寸測量帶來了革命性的突破。它依托先進的光學(xué)成像技術(shù)與精密的算法軟件,能夠快速、精準(zhǔn)地測量人造骨骼的平面尺寸。
    的頭像 發(fā)表于 12-27 11:13 ?193次閱讀
    <b class='flag-5'>圖像</b>尺寸<b class='flag-5'>測量</b>儀在人造骨骼尺寸<b class='flag-5'>測量</b>中的創(chuàng)新應(yīng)用

    盛顯科技:解決投影融合處理器的性能評估標(biāo)準(zhǔn)

    標(biāo)準(zhǔn)詳細(xì)介紹: 投影融合處理器性能評估標(biāo)準(zhǔn): 1、處理速度:應(yīng)具備快速的數(shù)據(jù)處理能力,能夠?qū)崟r處理并融合多個投影機的圖像,確保畫面流暢無卡頓。 2、分辨率:應(yīng)支持高分辨率輸入和輸出,能夠生成超高分辨率的
    的頭像 發(fā)表于 12-26 15:26 ?144次閱讀
    盛顯科技:解決<b class='flag-5'>投影</b>融合處理器的性能評估標(biāo)準(zhǔn)

    盛顯科技:投影融合處理器如何實現(xiàn)圖像的處理和融合?

    相信大家都知道,投影融合處理器實現(xiàn)融合投影功能的過程是一個復(fù)雜但高度專業(yè)化的技術(shù)過程,它主要依賴于先進的投影技術(shù)和圖像融合技術(shù),精妙地結(jié)合了尖端的
    的頭像 發(fā)表于 09-26 18:14 ?356次閱讀
    盛顯科技:<b class='flag-5'>投影</b>融合處理器如何實現(xiàn)<b class='flag-5'>圖像</b>的處理和融合?

    盛顯科技:投影融合處理器該怎么調(diào)試?

    投影融合處理器是一種功能強大、應(yīng)用廣泛的圖像處理設(shè)備,它通過先進的投影技術(shù)和圖像融合技術(shù),,能夠?qū)⒍鄠€圖像源進行實時融合,呈現(xiàn)出更加逼真、自
    的頭像 發(fā)表于 07-25 11:34 ?544次閱讀
    盛顯科技:<b class='flag-5'>投影</b>融合處理器該怎么調(diào)試?

    圖像識別算法的核心技術(shù)是什么

    中提取出有用的信息,為后續(xù)的分類和識別提供依據(jù)。特征提取的方法有很多,常見的有: 1.1 顏色特征:顏色是圖像最基本的屬性之一,常見的顏色特征有顏色直方圖、顏色矩等。 1.2 紋理特征:紋理
    的頭像 發(fā)表于 07-16 11:02 ?664次閱讀

    全息投影呈現(xiàn)什么影像特征

    的最大特點是能夠呈現(xiàn)物體的三維影像。與平面圖像不同,全息投影能夠呈現(xiàn)出物體的深度信息,使觀眾能夠從不同的角度觀察物體,感受到物體的立體效果。 1.1 深度感 全息投影的深度感是通過記錄物體的光波相位信息實現(xiàn)的。在全
    的頭像 發(fā)表于 07-08 11:15 ?723次閱讀

    全息投影運用了什么原理和技術(shù)

    全息投影技術(shù)是一種利用光學(xué)原理和數(shù)字技術(shù)實現(xiàn)三維立體圖像顯示的技術(shù)。它通過記錄和再現(xiàn)物體的光波信息,使觀眾能夠從不同角度觀察到物體的立體形象。本文將介紹全息投影的原理、技術(shù)以及應(yīng)用。 一、全息
    的頭像 發(fā)表于 07-08 11:13 ?1968次閱讀

    全息投影技術(shù)的原理是什么

    全息投影技術(shù)是一種利用光學(xué)原理,通過記錄和再現(xiàn)物體的光波信息,實現(xiàn)三維立體圖像的顯示技術(shù)。 一、全息投影技術(shù)的原理 全息的概念 全息(Holography)一詞來源于希臘語“holos”(全部
    的頭像 發(fā)表于 07-08 11:11 ?2264次閱讀

    增強現(xiàn)實ar和全息投影的區(qū)別

    。通過使用智能手機、平板電腦、智能眼鏡等設(shè)備,用戶可以在現(xiàn)實世界中看到虛擬的圖像、文字、聲音等信息。AR技術(shù)可以應(yīng)用于游戲、教育、醫(yī)療、旅游等多個領(lǐng)域。 全息投影 全息投影(Holographic Projection)是一種利
    的頭像 發(fā)表于 07-08 10:44 ?1443次閱讀

    全息投影與vr的區(qū)別是什么

    全息投影和VR(虛擬現(xiàn)實)是兩種不同的技術(shù),它們在許多方面都有顯著的區(qū)別。 技術(shù)原理: 全息投影是一種利用光學(xué)干涉和衍射原理,將物體的三維圖像投影到空間中的技術(shù)。它通過記錄物體的光波信
    的頭像 發(fā)表于 07-08 10:42 ?1692次閱讀

    vr和投影儀的區(qū)別是什么

    定義: 虛擬現(xiàn)實(VR):虛擬現(xiàn)實是一種通過計算機生成的模擬環(huán)境,讓用戶沉浸其中,體驗到仿佛身臨其境的感覺。 投影儀:投影儀是一種將圖像或視頻投射到大屏幕上的設(shè)備,通常用于商業(yè)演示、教育、家庭影院等
    的頭像 發(fā)表于 07-08 10:40 ?1368次閱讀

    測量系統(tǒng)|圖像尺寸測量測量亞克力板

    普密斯圖像測量儀在測量亞克力板方面具有高精度、快速、穩(wěn)定、智能化等優(yōu)點,能夠滿足各種亞克力板測量需求,為亞克力板的生產(chǎn)和應(yīng)用提供有力的技術(shù)支持。
    的頭像 發(fā)表于 06-15 10:11 ?420次閱讀
    <b class='flag-5'>測量</b>系統(tǒng)|<b class='flag-5'>圖像</b>尺寸<b class='flag-5'>測量</b>儀<b class='flag-5'>測量</b>亞克力板

    OpenCV筑基圖像的透視變換

    透視變換是一種非線性變換,它可以將一個二維坐標(biāo)系中的點映射到三維坐標(biāo)系中的點,然后再將其投影到另一個二維坐標(biāo)系中的點。透視變換可以改變圖像中的形狀,并可以模擬真實世界中的透視效果。
    的頭像 發(fā)表于 03-15 09:51 ?1084次閱讀
    OpenCV筑基<b class='flag-5'>之</b><b class='flag-5'>圖像</b>的透視變換

    投影融合系統(tǒng):技術(shù)解析與未來展望

    的視覺體驗。 投影融合系統(tǒng)的技術(shù)原理主要包括投影技術(shù)和圖像融合技術(shù)。投影技術(shù)是通過投影儀將圖像
    的頭像 發(fā)表于 02-01 14:50 ?1203次閱讀

    基于圖像處理技術(shù)的螺紋幾何參數(shù)測量系統(tǒng)設(shè)計

    摘要:針對螺紋幾何參數(shù)測量過程中,傳統(tǒng)人工測量效率低、儀器昂貴、耗時費力、偶伴有人為誤差等不足。本研究采用非接觸測量的方法, 利用計算機視覺的圖像處理技術(shù),通過系統(tǒng)標(biāo)定、
    的頭像 發(fā)表于 01-15 11:13 ?939次閱讀
    基于<b class='flag-5'>圖像</b>處理技術(shù)的螺紋幾何參數(shù)<b class='flag-5'>測量</b>系統(tǒng)設(shè)計