問題
前幾天有個(gè)人問了我一個(gè)問題,問題是這樣的,他有如下的一張二值圖像:
怎么得到白色Blob中心線,他希望的效果如下:
顯然OpenCV中常見的輪廓分析無法獲得上面的中心紅色線段,本質(zhì)上這個(gè)問題是如何提取二值對象的骨架,提取骨架的方法在OpenCV的擴(kuò)展模塊中,另外skimage包也支持圖像的骨架提取。這里就分別基于OpenCV擴(kuò)展模塊與skimage包來完成骨架提取,得到上述圖示的中心線。
01安裝skimage與opencv擴(kuò)展包
Python環(huán)境下安裝skimage圖像處理包與opencv計(jì)算機(jī)視覺包,只需要分別執(zhí)行下面兩行命令:
pip install opencv-contrib-pythonpip install skimage
導(dǎo)入使用
from skimage import morphology import cv2 as cv
02使用skimage實(shí)現(xiàn)骨架提取
有兩個(gè)相關(guān)的函數(shù)實(shí)現(xiàn)二值圖像的骨架提取,一個(gè)是基于距離變換實(shí)現(xiàn)的medial_axis方法;另外一個(gè)是基于thin的skeletonize骨架提取方法。兩個(gè)方法的代碼實(shí)現(xiàn)分別如下:
1def skeleton_demo(image):
2 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
3 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
4 binary[binary == 255] = 1
5 skeleton0 = morphology.skeletonize(binary)
6 skeleton = skeleton0.astype(np.uint8) * 255
7 cv.imshow(“skeleton”, skeleton)
8 cv.waitKey(0)
9 cv.destroyAllWindows()
10
11
12def medial_axis_demo(image):
13 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
14 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
15 binary[binary == 255] = 1
16 skel, distance = morphology.medial_axis(binary, return_distance=True)
17 dist_on_skel = distance * skel
18 skel_img = dist_on_skel.astype(np.uint8)*255
19 contours, hireachy = cv.findContours(skel_img, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
20 cv.drawContours(image, contours, -1, (0, 0, 255), 1, 8)
21
22 cv.imshow(“result”, image)
23 cv.waitKey(0)
24 cv.destroyAllWindows()
03使用OpenCV實(shí)現(xiàn)骨架提取
OpenCV的圖像細(xì)化的骨架提取方法在擴(kuò)展模塊中,因此需要直接安裝opencv-python的擴(kuò)展包。此外還可以通過形態(tài)學(xué)的膨脹與腐蝕來實(shí)現(xiàn)二值圖像的骨架提取,下面的代碼實(shí)現(xiàn)就是分別演示了基于OpenCV的兩種骨架提取方法。代碼分別如下:
1def morph_find(image):
2 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
3 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
4 kernel = cv.getStructuringElement(cv.MORPH_CROSS, (3, 3))
5 finished = False
6 size = np.size(binary)
7 skeleton = np.zeros(binary.shape, np.uint8)
8 while (not finished):
9 eroded = cv.erode(binary, kernel)
10 temp = cv.dilate(eroded, kernel)
11 temp = cv.subtract(binary, temp)
12 skeleton = cv.bitwise_or(skeleton, temp)
13 binary = eroded.copy()
14
15 zeros = size - cv.countNonZero(binary)
16 if zeros == size:
17 finished = True
18
19 contours, hireachy = cv.findContours(skeleton, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
20 cv.drawContours(image, contours, -1, (0, 0, 255), 1, 8)
21 cv.imshow(“skeleton”, image)
22 cv.waitKey(0)
23 cv.destroyAllWindows()
24
25
26def thin_demo(image):
27 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
28 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
29 thinned = cv.ximgproc.thinning(binary)
30 contours, hireachy = cv.findContours(thinned, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
31 cv.drawContours(image, contours, -1, (0, 0, 255), 1, 8)
32 cv.imshow(“thin”, image)
33 cv.waitKey(0)
34 cv.destroyAllWindows()
運(yùn)行結(jié)果如下:
編輯:lyn
-
二值圖像
+關(guān)注
關(guān)注
0文章
14瀏覽量
8744 -
OpenCV
+關(guān)注
關(guān)注
31文章
635瀏覽量
41386
發(fā)布評論請先 登錄
相關(guān)推薦
評論