0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

悄悄告訴你們其實(shí)電路都是算出來的!

電子工程技術(shù) ? 來源:嵌入式資訊精選 ? 作者:嵌入式資訊精選 ? 2021-03-30 11:36 ? 次閱讀

在你看這篇文章之前,我想提出幾點(diǎn)說明:

(1)最近在看拉扎維的書,寫下來這些東西,這也只是我個(gè)人在學(xué)習(xí)過程中的一點(diǎn)總結(jié),有什么觀點(diǎn)大家可以相互交流;

(2)不斷的思考,不斷的理解,不斷的總結(jié)!希望大家堅(jiān)持下去!

1、CS單管放大電路

共源級單管放大電路主要用于實(shí)現(xiàn)輸入小信號的線性放大,即獲得較高的電壓增益。在直流分析時(shí),根據(jù)輸入的直流柵電壓即可提供電路的靜態(tài)工作點(diǎn),而根據(jù) MOSFET的I-V特性曲線可知,MOSFET的靜態(tài)工作點(diǎn)具有較寬的動(dòng)態(tài)范圍,主要表現(xiàn)為MOS管在飽和區(qū)的VDS具有較寬的取值范圍,小信號放大時(shí) 輸入的最小電壓為VIN-VTH,最大值約為VDD,假設(shè)其在飽和區(qū)可以完全表現(xiàn)線性特性,并且實(shí)現(xiàn)信號的最大限度放大【理想條件下】,則確定的靜態(tài)工作 點(diǎn)約為VDS=(VIN-VTH VDD)/2,但是CS電路的實(shí)際特性以及MOS管所表現(xiàn)出的非線性關(guān)系則限制了小信號的理想放大。

主要表現(xiàn)在:

【1】 電路在飽和區(qū)所能夠確定的增益比較高,但仍然是有限的,也就是說,在對輸入信號的可取范圍內(nèi),確定了電路的增益。電路的非線性以及MOS管的跨導(dǎo)的 可變性決定了CS電路對于輸入小信號的放大是有限的,主要表現(xiàn)在輸入信號的幅度必須很小,這樣才能保證放大電路中晶體管的跨導(dǎo)近似看作常數(shù),電路的增益近 似確定;

【2】CS電路也反映了模擬CMOS電路放大兩個(gè)普遍的特點(diǎn),一是電路的靜態(tài)工作點(diǎn)將直接影響小信號的放大特性,也就是說 CMOS模擬放大電路的直流特性 和其交流特性之間有一定的相互影響。從輸入-輸出特性所表現(xiàn)的特性曲線可以看出,MOSFET在飽和區(qū)的不同點(diǎn)所對應(yīng)的電路增益不同,這取決于器件的非線性特性,但是在足夠小的范圍內(nèi)可以將非線性近似線性化,這就表現(xiàn)為在曲線的不同分段近似線性化的過程中電路的增益與電路的靜態(tài)工作點(diǎn)有直接關(guān)系,可以看出,靜態(tài)工作點(diǎn)的不同將決定了電路的本征增益。

這一點(diǎn)表現(xiàn)在計(jì)算中,CS電路的跨導(dǎo)取決于不同的柵壓下所產(chǎn)生的靜態(tài)電流,因此電路的增益是可選擇的,但是其增益的可選擇性將間接限制了輸出電壓的擺幅。這些都反映了放大電路增益的選擇和電流、功耗、速度等其他因素之間的矛盾。

【3】二是電路的靜態(tài)工作點(diǎn)將直接影響前一級和后一級的直流特性,因?yàn)镃S電路實(shí)現(xiàn)的放大是針對小信號的放大。但是電路的放大特性是基于靜態(tài)工作點(diǎn)的確定,換句話說,在電路中的中間級CS電路即需要根據(jù)前一級的靜態(tài)輸出來確定本級的工作點(diǎn),這也就導(dǎo)致了前一級對后一級的影響,增加了電路設(shè)計(jì)的復(fù)雜性。但是電路設(shè)計(jì)中的CD電路可以實(shí)現(xiàn)直流電平移位特性,交流信號的跟隨特性,這也就解決了靜態(tài)級間的影響,總體來講,這樣簡化了設(shè)計(jì),但是增加了電路的面積。

【4】 分析方法:CMOS模擬電路的復(fù)雜特性也決定了電路的小信號分析的特殊方法,區(qū)別于BJT,第一種方法即直接從大信號的分析入手,MOS管在模擬 IC中主要工作在線性區(qū)和飽和區(qū),結(jié)合MOS管的柵壓和漏源電壓所確定的不同區(qū)域的電流電壓關(guān)系進(jìn)而確定電路的大信號工作特性,而大信號的特性曲線一方面可以確定電路的靜態(tài)工作點(diǎn),另一方面也間接反映了電路的交流特性,因?yàn)閺拇笮盘柕叫⌒盘柕碾娐诽匦苑治鲆簿褪菍?shí)現(xiàn)電路的非線性到線性分析,交流特性或者小信號特性是一個(gè)微變化量的分析,而大信號特性是全擺幅的分析或者整體的分析,因此,小信號是大信號在工作點(diǎn)附近的一種近似,一種線性化。

也就是說,實(shí)現(xiàn)大信號到小信號的分析在數(shù)學(xué)上表現(xiàn)為微分關(guān)系。第二種方法則類似于BIT分析時(shí)的小信號等效模型分析,這樣從器件級建立信號的等效模型表現(xiàn)在電路級只能提供 一種簡易的計(jì)算方法,不能實(shí)現(xiàn)對電路的直觀理解。因此,在低頻狀態(tài)下表現(xiàn)為:CS電路能夠?qū)崿F(xiàn)對輸入信號的電壓放大,其電壓增益較高,輸入阻抗無窮大,輸出阻抗較小。

【5】MOS管構(gòu)成的二極管等效于一個(gè)低阻器件,作為共源級的負(fù)載,代替了電阻實(shí)現(xiàn)小信號的放大,但是,電路的增益受到了限制??偟膩碚f,利用電阻或者M(jìn)OS管構(gòu)成的有源二極管作為負(fù)載無法實(shí)現(xiàn)高增益的放大特性。

【6】 電流源負(fù)載的共源級放大電路實(shí)現(xiàn)了電壓的高增益放大、電路的大輸出擺幅,但是也在一定程度上帶來新的問題,可以看出,高增益源于等效的輸出阻抗較 大,大輸出擺幅可以通過調(diào)節(jié)靜態(tài)NMOS和PMOS的最低工作電壓實(shí)現(xiàn),但是GD的電容效應(yīng)和較高的輸出阻抗導(dǎo)致電路的響應(yīng)速度下降。在低頻工作狀態(tài)下電路能夠?qū)崿F(xiàn)較好的電壓轉(zhuǎn)換,但是在高頻工作區(qū)域,電路的速度受限。

另一方面,電路實(shí)現(xiàn)的高增益特性表現(xiàn)在輸出端漏源電壓的變化幅度較大,這就要求在靜態(tài)時(shí) 盡可能使漏端的輸出電壓保證NMOS和PMOS在臨界飽和點(diǎn)處電壓和的一半,這樣保證其輸出的擺幅對稱,不會(huì)產(chǎn)生失真,這就要求電路在靜態(tài)時(shí)輸入的柵電壓更穩(wěn)定,即使得輸出漏電壓處于臨界飽和點(diǎn)處電壓和的一半。

【7】理解誤區(qū):靜態(tài)時(shí)電路各點(diǎn)工作電壓是確定的。例電流源負(fù)載的CS電路, 放大管工作在飽和區(qū)條件下漏源電壓具有很大的變化范圍,但是電路在工作時(shí),其靜態(tài)電流相等,漏端的電壓相等,即可唯一確定漏端的靜態(tài)輸出電壓,表現(xiàn)在特性曲線上可理解為放大管的NMOS和負(fù)載管的PMOS在輸入唯一的情況下具有唯一確定的交點(diǎn),反映了唯一的漏電壓。這樣類比的結(jié)果,在MOS管構(gòu)成的復(fù)雜電路中是可以確定其各個(gè)MOS管在飽和狀態(tài)下的漏電壓的。

【8】 CS電路源級負(fù)反饋。負(fù)反饋的引入使得電路結(jié)構(gòu)發(fā)生了根本的變化,表現(xiàn)在無源器件所構(gòu)成的反饋網(wǎng)絡(luò)將聯(lián)系著輸入柵壓和輸出漏壓,因此隨著反饋深度的增加,對于輸入的信號變化量將主要反映在反饋的電阻上,也就是說輸入小信號的變化量將主要體現(xiàn)在反饋的電阻上,這種反饋的作用使得IDS和VGS的非線性關(guān)系減弱,近似線性化。同時(shí),電路的等效跨導(dǎo)也將隨著反饋的引入有界化。負(fù)反饋一方面改變了電路的線性度,另一方面增加了增益的恒定性,但是這些性能的改善以犧牲電壓增益為前提。

2、CD/CG單管放大電路

源級跟隨器在電路中主要用于實(shí)現(xiàn)電壓的緩沖,電平的移位。主要表現(xiàn)在:電路的電壓增益約等于1,這樣實(shí)現(xiàn)輸出近似跟隨輸入;飽和條件下輸出與輸入的變化為:輸出電壓等于輸入電壓-閾值電壓;電路的輸入阻抗趨于無窮大,輸出阻抗很小,這樣電路可以驅(qū)動(dòng)更小的負(fù)載,以保持電路在結(jié)構(gòu)上的匹配。因此CD電路在大信號中表現(xiàn)為直流電平的移位特性,在小信號中表現(xiàn)為交流信號的跟隨特性。而CG電路相對較低的輸入阻抗在電路中用于實(shí)現(xiàn)匹配特性。

3、Cascode電路

套筒式的共源共柵結(jié)構(gòu)在一定程度上限制了輸出的電壓擺幅,也就是說電路的最小輸出必須保證共源共柵結(jié)構(gòu)的MOSFET工作在飽和條件,即輸出的最小電平約為兩個(gè)過驅(qū)動(dòng)電壓之和,但是卻極大的提高了電路的輸出阻抗。共源共柵結(jié)構(gòu)將輸入的電壓信號轉(zhuǎn)換為電流,而電流又作為CS電路的輸入。而折疊式的共源共柵結(jié)構(gòu)在實(shí)現(xiàn)電路的放大時(shí)表現(xiàn)為較好的低壓特性。

4、電路是計(jì)算出來的

【1】直流工作點(diǎn)的確定依據(jù)其輸入的靜態(tài)電壓或靜態(tài)電流確定,換句話說,電路中各點(diǎn)的靜態(tài)電壓和電流都是可以計(jì)算出來的,因?yàn)槠潇o態(tài)電路各點(diǎn)的IV關(guān)系滿足基本的電路定理,電路結(jié)構(gòu)的不同所表現(xiàn)的電流、電壓表達(dá)式是唯一確定的,即電路的靜態(tài)參數(shù)是唯一確定的。

【2】在直流工作點(diǎn)的基礎(chǔ)上進(jìn)行的交流分析也就是對輸入小信號的分析,所實(shí)現(xiàn)的放大是對疊加在工作點(diǎn)上的小信號進(jìn)行放大。或者說,直流電平提供了小信號工 作的穩(wěn)態(tài)條件,而交流特性則反映了信號的動(dòng)態(tài)變換,即放大特性,這樣在直流電平上疊加的交流小信號共同作為輸入作用于電路實(shí)現(xiàn)信號的放大??偟膩碚f,電路的交流特性可以通過小信號分析得到,或者通過等效的電路模型簡化分析,因此,電路的增益、輸入阻抗、輸出阻抗都是可以進(jìn)行計(jì)算的。

5、MOSFET小信號模型直觀理解

MOSFET 在飽和條件下的工作狀態(tài)可以通過小信號等效電路圖進(jìn)行分析,但是小信號等效電路分析也只是提供了一種較為簡化的計(jì)算方法。電路中的MOS管通過柵源電壓的微變化轉(zhuǎn)換為漏源電流的變化,在交流通路中流過相應(yīng)的負(fù)載即可產(chǎn)生交流輸出電壓,而直流和交流的疊加產(chǎn)生最終的輸出電壓,產(chǎn)生這一現(xiàn)象的根源在于器件的非線性特性。

因此,對于直流通路的分析根據(jù)其靜態(tài)工作電壓和電流關(guān)系即可得到,而對于交流通路仍然可以建立交流等效電路,但是對于有源器件來講,其電流和電壓的非線性導(dǎo)致器件自身的交直流阻抗分離,這就導(dǎo)致交流通路的某些參數(shù)發(fā)生變化,這樣電路的交流分析應(yīng)當(dāng)注意器件阻抗的變化,這正是源于有源器件的非線性導(dǎo)致的交直流阻抗分離。

從MOSFET 的小信號等效電路可以看出,柵源電壓對于漏源電流的控制起主導(dǎo)作用,也就是說漏源電壓和襯底效應(yīng)對器件工作狀態(tài)的影響可以忽略,因此可以看出,MOS管的漏源電流受三方面的影響,從柵端口看,柵壓對電流的影響gm*vgs,漏源電壓對電流的影響gd*vds,襯底的影響gmb*vbs。那么從電流的角度來講,二級效應(yīng)表現(xiàn)為gm*vgs、gd*vds和gd*vds電流的總和。

一般條件下,在電路的初始分析過程中忽略溝道長度調(diào)制和體效應(yīng)的 影響,這樣簡化的MOS模型僅受柵壓的影響,因此從源到柵的等效阻抗約為1/gm。簡化的電路分析往往因?yàn)楹雎缘拇渭壭?yīng)而產(chǎn)生誤差,但是對于電路的直觀理解是很重要的。

6、SPICE模型

晶體管級的連接決定了電路的結(jié)構(gòu),但是電路的性能卻取決于具體的參數(shù)設(shè)置。SPICE模型提供了器件的具體參數(shù)化過程,即對電路的仿真分析需要進(jìn)行參數(shù)的設(shè)置,即在工藝過程中的所約束的各種參數(shù)提供了一個(gè)較為完整的器件級的參數(shù)模型,例如溝道長度調(diào)制系數(shù)、寄生的電容、柵氧層的厚度等等,這些都是為了將晶體管的參數(shù)進(jìn)行量化,即在器件層次的某些參數(shù)也是可以計(jì)算出來的!

7、五管差分對【全對稱結(jié)構(gòu)】

輸入信號是直流和交流的疊加,直流電平用于確定電路的靜態(tài)工作點(diǎn),根據(jù)IV特性曲線可知,基本差分結(jié)構(gòu)在輸入直流電平相等的條件下所表現(xiàn)的線性關(guān)系最好, 并且其線性范圍最大,這樣增大了輸入交流小信號的動(dòng)態(tài)范圍。但是直流工作點(diǎn)的選取依賴于基本的電路結(jié)構(gòu),也具有一定的范圍:保證尾電流管處于飽和區(qū),同時(shí)不能使得放大管進(jìn)入線性區(qū),這樣就近似確定的輸入共模電平的選擇范圍。靜態(tài)下的五管差分對,其節(jié)點(diǎn)的電流電壓是完全可以計(jì)算出來的。而電路的對稱結(jié)構(gòu)簡化 了其交流特性的分析,基本的五管差分對可以簡化為CS單管放大電路。

全對稱的五管差分對也再次體現(xiàn)了CMOS模擬電路的一特點(diǎn),交直流之間的相互影響?;蛘哒f,基本的CS電路的直流電平確定了電路的靜態(tài)工作點(diǎn),但是直流工作下最大的電平輸出也限制了交流小信號的輸出電壓,即在電路輸入確定的條件下限制了其增益,或者在增益確定的條件下限制了輸入小信號的擺幅??傊?,電路的交直流特性相互影響較大,這一點(diǎn)區(qū)別于BIT。

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • MOS管
    +關(guān)注

    關(guān)注

    109

    文章

    2537

    瀏覽量

    70044
  • CS
    CS
    +關(guān)注

    關(guān)注

    0

    文章

    55

    瀏覽量

    24972
  • PMOS
    +關(guān)注

    關(guān)注

    4

    文章

    266

    瀏覽量

    30363
  • CMOS電路
    +關(guān)注

    關(guān)注

    0

    文章

    49

    瀏覽量

    11785

原文標(biāo)題:大神告訴你真相:電路都是算出來的!

文章出處:【微信號:EngicoolArabic,微信公眾號:電子工程技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 0人收藏

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    AD2S1200解碼芯片的精度是11弧分,這個(gè)數(shù)值是怎么計(jì)算出來的?

    請問一下,AD2S1200解碼芯片的精度是11弧分,這個(gè)數(shù)值是怎么計(jì)算出來的?
    發(fā)表于 04-15 06:20

    STM32F1 xcube cryptolib ECDSA計(jì)算出來的摘要值和外部驗(yàn)證工具計(jì)算出來的簽名值對不上怎么解決?

    STMF1 xcube cryptolib ECDSA簽名,采用CMOX_ECC_CURVE_SECP256R1曲線、SHA256摘要算法,計(jì)算出來的摘要值和外部驗(yàn)證工具計(jì)算出來的簽名值對不上,外部
    發(fā)表于 03-07 09:24

    DLP6500BFYE數(shù)據(jù)手冊上給出的這個(gè)9523hz是在何種情況下如何計(jì)算出來的?

    加載時(shí)間為99.4us,以一副圖像的加載時(shí)間作為它的顯示時(shí)間,那這樣計(jì)算下來圖像的速率都超過了10000hz,但是DLP6500FYE的數(shù)據(jù)手冊給出它的圖像速率最高僅為9523hz,請問是我哪里理解錯(cuò)了嗎,數(shù)據(jù)手冊上給出的這個(gè)9523hz是在何種情況下如何計(jì)算出來的。
    發(fā)表于 02-26 07:38

    ADS1146芯片采集電壓,用SPI通信讀到是數(shù)據(jù)計(jì)算出來和用電壓表測得的值總有誤差,怎么解決?

    我用到ADS1146芯片采集電壓,我的芯片REF電壓是0.6163V,芯片工作電壓是3.3V。用SPI通信讀到是數(shù)據(jù)計(jì)算出來和用電壓表測得的值總有誤差,最大誤差是3mv,誤差是線性誤差。請問是什么原因?qū)е碌哪??如果是需要校?zhǔn) 那么怎么校準(zhǔn)呢?
    發(fā)表于 01-07 06:34

    使用430驅(qū)動(dòng)TMP006紅外傳感器,計(jì)算出來的Tobj一直是358~360之間波動(dòng),為什么?

    使用430驅(qū)動(dòng)TMP006紅外傳感器,各寄存器讀取數(shù)據(jù)正常,經(jīng)過方程式計(jì)算后Tdie正常在26.5度左右,Vobj數(shù)值8.18312447E-3 計(jì)算出來的Tobj一直是358~360之間波動(dòng)
    發(fā)表于 01-02 07:13

    用INA233來監(jiān)控主芯片的幾個(gè)PORT的供電情況,這顆芯片I2C直接輸出電流值是怎么算出來的?

    本人打算要用INA233來監(jiān)控主芯片的幾個(gè)PORT的供電情況,但是仔細(xì)看了手冊不太明白這顆芯片I2C直接輸出電流值是怎么算出來的? 如果是已經(jīng)計(jì)算好的值,那肯定需要有檢流電阻的值,可我查看手冊也
    發(fā)表于 12-03 06:00

    TPA2013D1功率是如何計(jì)算出來的,和哪些因素有關(guān)?

    有關(guān),如何計(jì)算? 和輸入有關(guān)么,比如IN+ 接輸入P,IN-接地 和IN+接輸入P, IN-接輸入N輸出功率應(yīng)該相差4倍吧?? 請答疑,謝謝! 主要想知道功率是如何計(jì)算出來的。和哪些因素有關(guān)
    發(fā)表于 11-07 07:52

    向TAS5508C寫入的EQ ,DRC數(shù)據(jù)是用什么工具算出來的?

    向TAS5508C寫入的EQ ,DRC數(shù)據(jù)是用什么工具算出來
    發(fā)表于 11-05 07:33

    TAS5710的PLL_FLTP和電源VR_ANA的電阻和電容的C9,R5,C10的值是怎么算出來的?

    TAS5710的PLL_FLTP和電源VR_ANA的電阻和電容的C9,R5,C10的值是怎么算出來的,誤差大的話會(huì)有什么影響?
    發(fā)表于 11-01 07:15

    使用TAS5756做一款低音炮,需要隨時(shí)調(diào)節(jié)低通濾波寬帶,請問這些數(shù)據(jù)是怎么算出來的?

    你好,使用TAS5756做一款低音炮。需要隨時(shí)調(diào)節(jié)低通濾波寬帶,現(xiàn)在用purepath Console可以調(diào)節(jié)(low pass,butterworth模式),但是不知道BO,B1,B2,A1,A2的值怎么計(jì)算出來的,可否提供計(jì)算公式。謝謝
    發(fā)表于 10-28 06:09

    PCM1808從模擬信號輸入到I2S信號輸出的延遲時(shí)間是多少?怎樣計(jì)算出來?

    PCM1808從模擬信號輸入到I2S信號輸出的延遲時(shí)間是多少,或者怎樣計(jì)算出來?我想選一個(gè)低延遲的音頻ADC是否還有別的更好推薦,謝謝。
    發(fā)表于 10-14 06:25

    LTSR 25-NP計(jì)算出來的電流誤差特別大,為什么?

    大家好,我現(xiàn)在使用的電流傳感器是lem的LTSR 25-NP,其中電流和輸出電壓關(guān)系是:v=2.5+0.025*I,現(xiàn)在的AD采樣輸入范圍是0-3V,中間有一個(gè)放大倍數(shù),但是即使這樣,電壓稍微波動(dòng)一些,計(jì)算出來的電流誤差就特別大,請大家支招,謝謝!
    發(fā)表于 09-03 08:18

    振蕩電路沒仿真出來波形是怎么回事?

    圖1 是一個(gè)驅(qū)動(dòng)電路,只需要15V供電就能驅(qū)動(dòng)5.8NF的負(fù)載。圖2-3是負(fù)載兩端的輸出波形。 這個(gè)驅(qū)動(dòng)沒琢磨出來,用的啥振蕩電路,哪幾個(gè)是選頻網(wǎng)絡(luò),,怎么算出來的。。還請壇友們
    發(fā)表于 08-13 08:16

    dd馬達(dá)偏差量怎么計(jì)算出來

    反映了電機(jī)的實(shí)際位置與期望位置之間的差異。 計(jì)算DD馬達(dá)偏差量的基本步驟如下: 確定期望位置:期望位置是系統(tǒng)希望電機(jī)達(dá)到的目標(biāo)位置。這可以是用戶輸入的值,也可以是系統(tǒng)根據(jù)某種算法計(jì)算出來的值。 獲取實(shí)際位置:實(shí)際位置是電機(jī)當(dāng)前的實(shí)際位置。這可
    的頭像 發(fā)表于 07-11 15:05 ?1204次閱讀

    電流互感器的倍數(shù)怎么算出來

    和原理。 電流互感器的基本原理 電流互感器的基本原理是利用變壓器的工作原理,將高電流轉(zhuǎn)換為低電流。其主要由兩個(gè)線圈組成,即一次線圈和二次線圈。一次線圈與被測電路串聯(lián),二次線圈與測量或保護(hù)設(shè)備并聯(lián)。當(dāng)一次線圈中
    的頭像 發(fā)表于 06-24 10:31 ?5868次閱讀

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會(huì)員交流學(xué)習(xí)
    • 獲取您個(gè)性化的科技前沿技術(shù)信息
    • 參加活動(dòng)獲取豐厚的禮品