本文主要介紹了高斯濾波器的原理及其實現(xiàn)過程 高斯濾波器是一種線性濾波器,能夠有效的抑制噪聲,平滑圖像。其作用原理和均值濾波器類似,都是取濾波器窗口內(nèi)的像素的均值作為輸出。其窗口模板的系數(shù)和均值濾波器不同,均值濾波器的模板系數(shù)都是相同的為1;而高斯濾波器的模板系數(shù),則隨著距離模板中心的增大而系數(shù)減小。所以,高斯濾波器相比于均值濾波器對圖像個模糊程度較小。 什么是高斯濾波器 既然名稱為高斯濾波器,那么其和高斯分布(正態(tài)分布)是有一定的關系的。一個二維的高斯函數(shù)如下:
其中(x,y)(x,y)為點坐標,在圖像處理中可認為是整數(shù);σσ是標準差。要想得到一個高斯濾波器的模板,可以對高斯函數(shù)進行離散化,得到的高斯函數(shù)值作為模板的系數(shù)。例如:要產(chǎn)生一個3×33×3的高斯濾波器模板,以模板的中心位置為坐標原點進行取樣。模板在各個位置的坐標,如下所示(x軸水平向右,y軸豎直向下)
這樣,將各個位置的坐標帶入到高斯函數(shù)中,得到的值就是模板的系數(shù)。 對于窗口模板的大小為(2k+1)×(2k+1),模板中各個元素值的計算公式如下:
這樣計算出來的模板有兩種形式:小數(shù)和整數(shù)。
小數(shù)形式的模板,就是直接計算得到的值,沒有經(jīng)過任何的處理;
整數(shù)形式的,則需要進行歸一化處理,將模板左上角的值歸一化為1,下面會具體介紹。使用整數(shù)的模板時,需要在模板的前面加一個系數(shù),系數(shù)為也就是模板系數(shù)和的倒數(shù)。
高斯模板的生成 知道模板生成的原理,實現(xiàn)起來也就不困難了
void generateGaussianTemplate(double window[][11], int ksize, double sigma){ static const double pi = 3.1415926; int center = ksize / 2; // 模板的中心位置,也就是坐標的原點 double x2, y2; for (int i = 0; i < ksize; i++) { x2 = pow(i - center, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - center, 2); double g = exp(-(x2 + y2) / (2 * sigma * sigma)); g /= 2 * pi * sigma; window[i][j] = g; } } double k = 1 / window[0][0]; // 將左上角的系數(shù)歸一化為1 for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { window[i][j] *= k; } }} ? 需要一個二維數(shù)組,存放生成的系數(shù)(這里假設模板的最大尺寸不會超過11);第二個參數(shù)是模板的大小(不要超過11);第三個參數(shù)就比較重要了,是高斯分布的標準差。 生成的過程,首先根據(jù)模板的大小,找到模板的中心位置ksize/2。然后就是遍歷,根據(jù)高斯分布的函數(shù),計算模板中每個系數(shù)的值。 ? 需要注意的是,最后歸一化的過程,使用模板左上角的系數(shù)的倒數(shù)作為歸一化的系數(shù)(左上角的系數(shù)值被歸一化為1),模板中的每個系數(shù)都乘以該值(左上角系數(shù)的倒數(shù)),然后將得到的值取整,就得到了整數(shù)型的高斯濾波器模板。 ? 下面截圖生成的是,大小為3×3,σ=0.83×3,σ=0.8的模板 ?
對上述解結果取整后得到如下模板: ? 這個模板就比較熟悉了,其就是根據(jù)σ=0.8的高斯函數(shù)生成的模板。 ? 至于小數(shù)形式的生成也比較簡單,去掉歸一化的過程,并且在求解過程后,模板的每個系數(shù)要除以所有系數(shù)的和。具體代碼如下:
void generateGaussianTemplate(double window[][11], int ksize, double sigma){ static const double pi = 3.1415926; int center = ksize / 2; // 模板的中心位置,也就是坐標的原點 double x2, y2; double sum = 0; for (int i = 0; i < ksize; i++) { x2 = pow(i - center, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - center, 2); double g = exp(-(x2 + y2) / (2 * sigma * sigma)); g /= 2 * pi * sigma; sum += g; window[i][j] = g; } } //double k = 1 / window[0][0]; // 將左上角的系數(shù)歸一化為1 for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { window[i][j] /= sum; } }} ? 3×3,σ=0.8的小數(shù)型模板。
σσ值的意義及選取 通過上述的實現(xiàn)過程,不難發(fā)現(xiàn),高斯濾波器模板的生成最重要的參數(shù)就是高斯分布的標準差σσ。標準差代表著數(shù)據(jù)的離散程度,如果σσ較小,那么生成的模板的中心系數(shù)較大,而周圍的系數(shù)較小,這樣對圖像的平滑效果就不是很明顯;反之,σσ較大,則生成的模板的各個系數(shù)相差就不是很大,比較類似均值模板,對圖像的平滑效果比較明顯。 來看下一維高斯分布的概率分布密度圖:
橫軸表示可能得取值x,豎軸表示概率分布密度F(x),那么不難理解這樣一個曲線與x軸圍成的圖形面積為1。σσ(標準差)決定了這個圖形的寬度,可以得出這樣的結論:σσ越大,則圖形越寬,尖峰越小,圖形較為平緩;σσ越小,則圖形越窄,越集中,中間部分也就越尖,圖形變化比較劇烈。這其實很好理解,如果sigma也就是標準差越大,則表示該密度分布一定比較分散,由于面積為1,于是尖峰部分減小,寬度越寬(分布越分散);同理,當σσ越小時,說明密度分布較為集中,于是尖峰越尖,寬度越窄! 于是可以得到如下結論: σσ越大,分布越分散,各部分比重差別不大,于是生成的模板各元素值差別不大,類似于平均模板; σσ越小,分布越集中,中間部分所占比重遠遠高于其他部分,反映到高斯模板上就是中心元素值遠遠大于其他元素值,于是自然而然就相當于中間值得點運算。 基于OpenCV的實現(xiàn) 在生成高斯模板好,其簡單的實現(xiàn)和其他的空間濾波器沒有區(qū)別,具體代碼如下:
void GaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma){ CV_Assert(src.channels() || src.channels() == 3); // 只處理單通道或者三通道圖像 const static double pi = 3.1415926; // 根據(jù)窗口大小和sigma生成高斯濾波器模板 // 申請一個二維數(shù)組,存放生成的高斯模板矩陣 double **templateMatrix = new double*[ksize]; for (int i = 0; i < ksize; i++) templateMatrix[i] = new double[ksize]; int origin = ksize / 2; // 以模板的中心為原點 double x2, y2; double sum = 0; for (int i = 0; i < ksize; i++) { x2 = pow(i - origin, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - origin, 2); // 高斯函數(shù)前的常數(shù)可以不用計算,會在歸一化的過程中給消去 double g = exp(-(x2 + y2) / (2 * sigma * sigma)); sum += g; templateMatrix[i][j] = g; } } for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { templateMatrix[i][j] /= sum; cout << templateMatrix[i][j] << " "; } cout << endl; } // 將模板應用到圖像中 int border = ksize / 2; copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT); int channels = dst.channels(); int rows = dst.rows - border; int cols = dst.cols - border; for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int a = -border; a <= border; a++) { for (int b = -border; b <= border; b++) { if (channels == 1) { sum[0] += templateMatrix[border + a][border + b] * dst.at
// 分離的計算void separateGaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma){ CV_Assert(src.channels()==1 || src.channels() == 3); // 只處理單通道或者三通道圖像 // 生成一維的高斯濾波模板 double *matrix = new double[ksize]; double sum = 0; int origin = ksize / 2; for (int i = 0; i < ksize; i++) { // 高斯函數(shù)前的常數(shù)可以不用計算,會在歸一化的過程中給消去 double g = exp(-(i - origin) * (i - origin) / (2 * sigma * sigma)); sum += g; matrix[i] = g; } // 歸一化 for (int i = 0; i < ksize; i++) matrix[i] /= sum; // 將模板應用到圖像中 int border = ksize / 2; copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT); int channels = dst.channels(); int rows = dst.rows - border; int cols = dst.cols - border; // 水平方向 for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int k = -border; k <= border; k++) { if (channels == 1) { sum[0] += matrix[border + k] * dst.at
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT ); 二維高斯函數(shù)的標準差在x和y方向上應該分別有一個標準差,在上面的代碼中一直設其在x和y方向的標準是相等的,在OpenCV中的高斯濾波器中,可以在x和y方向上設置不同的標準差。 下圖是自己實現(xiàn)的高斯濾波器和OpenCV中的GaussianBlur的結果對比
上圖是5×5,σ=0.8的高斯濾波器,可以看出兩個實現(xiàn)得到的結果沒有很大的區(qū)別。 總結 高斯濾波器是一種線性平滑濾波器,其濾波器的模板是對二維高斯函數(shù)離散得到。由于高斯模板的中心值最大,四周逐漸減小,其濾波后的結果相對于均值濾波器來說更好。 高斯濾波器最重要的參數(shù)就是高斯分布的標準差σσ,標準差和高斯濾波器的平滑能力有很大的能力,σσ越大,高斯濾波器的頻帶就較寬,對圖像的平滑程度就越好。通過調(diào)節(jié)σσ參數(shù),可以平衡對圖像的噪聲的抑制和對圖像的模糊。
責任編輯:lq
-
濾波器
+關注
關注
161文章
7854瀏覽量
178520 -
模板
+關注
關注
0文章
108瀏覽量
20582 -
函數(shù)
+關注
關注
3文章
4344瀏覽量
62810
原文標題:高斯濾波器的原理及其實現(xiàn)過程(附模板代碼)
文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論