0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

詳細(xì)講解SDD算法的原理

新機(jī)器視覺(jué) ? 來(lái)源:計(jì)算機(jī)視覺(jué)聯(lián)盟 ? 作者:計(jì)算機(jī)視覺(jué)聯(lián)盟 ? 2021-03-20 09:32 ? 次閱讀

前言

目標(biāo)檢測(cè)近年來(lái)已經(jīng)取得了很重要的進(jìn)展,主流的算法主要分為兩個(gè)類型(參考RefineDet):(1)two-stage方法,如R-CNN系算法,其主要思路是先通過(guò)啟發(fā)式方法(selective search)或者CNN網(wǎng)絡(luò)(RPN)產(chǎn)生一系列稀疏的候選框,然后對(duì)這些候選框進(jìn)行分類與回歸,two-stage方法的優(yōu)勢(shì)是準(zhǔn)確度高;(2)one-stage方法,如Yolo和SSD,其主要思路是均勻地在圖片的不同位置進(jìn)行密集抽樣,抽樣時(shí)可以采用不同尺度和長(zhǎng)寬比,然后利用CNN提取特征后直接進(jìn)行分類與回歸,整個(gè)過(guò)程只需要一步,所以其優(yōu)勢(shì)是速度快,但是均勻的密集采樣的一個(gè)重要缺點(diǎn)是訓(xùn)練比較困難,這主要是因?yàn)檎龢颖九c負(fù)樣本(背景)極其不均衡(參見(jiàn)Focal Loss),導(dǎo)致模型準(zhǔn)確度稍低。不同算法的性能如圖1所示,可以看到兩類方法在準(zhǔn)確度和速度上的差異。

圖1 不同檢測(cè)算法的性能對(duì)比

本文講解的是SSD算法,其英文全名是Single Shot MultiBox Detector,名字取得不錯(cuò),Single shot指明了SSD算法屬于one-stage方法,MultiBox指明了SSD是多框預(yù)測(cè)。在上一篇文章中我們已經(jīng)講了Yolo算法,從圖1也可以看到,SSD算法在準(zhǔn)確度和速度(除了SSD512)上都比Yolo要好很多。圖2給出了不同算法的基本框架圖,對(duì)于Faster R-CNN,其先通過(guò)CNN得到候選框,然后再進(jìn)行分類與回歸,而Yolo與SSD可以一步到位完成檢測(cè)。相比Yolo,SSD采用CNN來(lái)直接進(jìn)行檢測(cè),而不是像Yolo那樣在全連接層之后做檢測(cè)。其實(shí)采用卷積直接做檢測(cè)只是SSD相比Yolo的其中一個(gè)不同點(diǎn),另外還有兩個(gè)重要的改變,一是SSD提取了不同尺度的特征圖來(lái)做檢測(cè),大尺度特征圖(較靠前的特征圖)可以用來(lái)檢測(cè)小物體,而小尺度特征圖(較靠后的特征圖)用來(lái)檢測(cè)大物體;二是SSD采用了不同尺度和長(zhǎng)寬比的先驗(yàn)框(Prior boxes, Default boxes,在Faster R-CNN中叫做錨,Anchors)。Yolo算法缺點(diǎn)是難以檢測(cè)小目標(biāo),而且定位不準(zhǔn),但是這幾點(diǎn)重要改進(jìn)使得SSD在一定程度上克服這些缺點(diǎn)。下面我們?cè)敿?xì)講解SDD算法的原理,并最后給出如何用TensorFlow實(shí)現(xiàn)SSD算法。

1b531472-88ef-11eb-8b86-12bb97331649.jpg

圖2 不同算法的基本框架圖設(shè)計(jì)理念

SSD和Yolo一樣都是采用一個(gè)CNN網(wǎng)絡(luò)來(lái)進(jìn)行檢測(cè),但是卻采用了多尺度的特征圖,其基本架構(gòu)如圖3所示。下面將SSD核心設(shè)計(jì)理念總結(jié)為以下三點(diǎn):

圖3 SSD基本框架

(1)采用多尺度特征圖用于檢測(cè)

所謂多尺度采用大小不同的特征圖,CNN網(wǎng)絡(luò)一般前面的特征圖比較大,后面會(huì)逐漸采用stride=2的卷積或者pool來(lái)降低特征圖大小,這正如圖3所示,一個(gè)比較大的特征圖和一個(gè)比較小的特征圖,它們都用來(lái)做檢測(cè)。這樣做的好處是比較大的特征圖來(lái)用來(lái)檢測(cè)相對(duì)較小的目標(biāo),而小的特征圖負(fù)責(zé)檢測(cè)大目標(biāo),如圖4所示,8x8的特征圖可以劃分更多的單元,但是其每個(gè)單元的先驗(yàn)框尺度比較小。

圖4 不同尺度的特征圖

(2)采用卷積進(jìn)行檢測(cè)

與Yolo最后采用全連接層不同,SSD直接采用卷積對(duì)不同的特征圖來(lái)進(jìn)行提取檢測(cè)結(jié)果。對(duì)于形狀為的特征圖,只需要采用這樣比較小的卷積核得到檢測(cè)值。

(3)設(shè)置先驗(yàn)框

在Yolo中,每個(gè)單元預(yù)測(cè)多個(gè)邊界框,但是其都是相對(duì)這個(gè)單元本身(正方塊),但是真實(shí)目標(biāo)的形狀是多變的,Yolo需要在訓(xùn)練過(guò)程中自適應(yīng)目標(biāo)的形狀。而SSD借鑒了Faster R-CNN中anchor的理念,每個(gè)單元設(shè)置尺度或者長(zhǎng)寬比不同的先驗(yàn)框,預(yù)測(cè)的邊界框(bounding boxes)是以這些先驗(yàn)框?yàn)榛鶞?zhǔn)的,在一定程度上減少訓(xùn)練難度。一般情況下,每個(gè)單元會(huì)設(shè)置多個(gè)先驗(yàn)框,其尺度和長(zhǎng)寬比存在差異,如圖5所示,可以看到每個(gè)單元使用了4個(gè)不同的先驗(yàn)框,圖片中貓和狗分別采用最適合它們形狀的先驗(yàn)框來(lái)進(jìn)行訓(xùn)練,后面會(huì)詳細(xì)講解訓(xùn)練過(guò)程中的先驗(yàn)框匹配原則。

圖5 SSD的先驗(yàn)框

SSD的檢測(cè)值也與Yolo不太一樣。對(duì)于每個(gè)單元的每個(gè)先驗(yàn)框,其都輸出一套獨(dú)立的檢測(cè)值,對(duì)應(yīng)一個(gè)邊界框,主要分為兩個(gè)部分。第一部分是各個(gè)類別的置信度或者評(píng)分,值得注意的是SSD將背景也當(dāng)做了一個(gè)特殊的類別,如果檢測(cè)目標(biāo)共有個(gè)類別,SSD其實(shí)需要預(yù)測(cè)個(gè)置信度值,其中第一個(gè)置信度指的是不含目標(biāo)或者屬于背景的評(píng)分。后面當(dāng)我們說(shuō)個(gè)類別置信度時(shí),請(qǐng)記住里面包含背景那個(gè)特殊的類別,即真實(shí)的檢測(cè)類別只有個(gè)。在預(yù)測(cè)過(guò)程中,置信度最高的那個(gè)類別就是邊界框所屬的類別,特別地,當(dāng)?shù)谝粋€(gè)置信度值最高時(shí),表示邊界框中并不包含目標(biāo)。第二部分就是邊界框的location,包含4個(gè)值,分別表示邊界框的中心坐標(biāo)以及寬高。但是真實(shí)預(yù)測(cè)值其實(shí)只是邊界框相對(duì)于先驗(yàn)框的轉(zhuǎn)換值(paper里面說(shuō)是offset,但是覺(jué)得transformation更合適,參見(jiàn)R-CNN)。先驗(yàn)框位置用表示,其對(duì)應(yīng)邊界框用lbd$ 的轉(zhuǎn)換值:

習(xí)慣上,我們稱上面這個(gè)過(guò)程為邊界框的編碼(encode),預(yù)測(cè)時(shí),你需要反向這個(gè)過(guò)程,即進(jìn)行解碼(decode),從預(yù)測(cè)值中得到邊界框的真實(shí)位置:

然而,在SSD的Caffe源碼實(shí)現(xiàn)中還有trick,那就是設(shè)置variance超參數(shù)來(lái)調(diào)整檢測(cè)值,通過(guò)bool參數(shù)variance_encoded_in_target來(lái)控制兩種模式,當(dāng)其為T(mén)rue時(shí),表示variance被包含在預(yù)測(cè)值中,就是上面那種情況。但是如果是False(大部分采用這種方式,訓(xùn)練更容易?),就需要手動(dòng)設(shè)置超參數(shù)variance,用來(lái)對(duì)的4個(gè)值進(jìn)行放縮,此時(shí)邊界框需要這樣解碼:

綜上所述,對(duì)于一個(gè)大小的特征圖,共有個(gè)單元,每個(gè)單元設(shè)置的先驗(yàn)框數(shù)目記為,那么每個(gè)單元共需要個(gè)預(yù)測(cè)值,所有的單元共需要個(gè)預(yù)測(cè)值,由于SSD采用卷積做檢測(cè),所以就需要個(gè)卷積核完成這個(gè)特征圖的檢測(cè)過(guò)程。

網(wǎng)絡(luò)結(jié)構(gòu)

SSD采用VGG16作為基礎(chǔ)模型,然后在VGG16的基礎(chǔ)上新增了卷積層來(lái)獲得更多的特征圖以用于檢測(cè)。SSD的網(wǎng)絡(luò)結(jié)構(gòu)如圖5所示。上面是SSD模型,下面是Yolo模型,可以明顯看到SSD利用了多尺度的特征圖做檢測(cè)。模型的輸入圖片大小是(還可以是,其與前者網(wǎng)絡(luò)結(jié)構(gòu)沒(méi)有差別,只是最后新增一個(gè)卷積層,本文不再討論)。

1c337774-88ef-11eb-8b86-12bb97331649.jpg

圖5 SSD網(wǎng)絡(luò)結(jié)構(gòu)

采用VGG16做基礎(chǔ)模型,首先VGG16是在ILSVRC CLS-LOC數(shù)據(jù)集預(yù)訓(xùn)練。然后借鑒了DeepLab-LargeFOV,分別將VGG16的全連接層fc6和fc7轉(zhuǎn)換成卷積層 conv6和卷積層conv7,同時(shí)將池化層pool5由原來(lái)的stride=2的變成stride=1的(猜想是不想reduce特征圖大?。?,為了配合這種變化,采用了一種Atrous Algorithm,其實(shí)就是conv6采用擴(kuò)展卷積或帶孔卷積(Dilation Conv),其在不增加參數(shù)與模型復(fù)雜度的條件下指數(shù)級(jí)擴(kuò)大卷積的視野,其使用擴(kuò)張率(dilation rate)參數(shù),來(lái)表示擴(kuò)張的大小,如下圖6所示,(a)是普通的卷積,其視野就是,(b)是擴(kuò)張率為2,此時(shí)視野變成,(c)擴(kuò)張率為4時(shí),視野擴(kuò)大為,但是視野的特征更稀疏了。Conv6采用大小但dilation rate=6的擴(kuò)展卷積。

圖6 擴(kuò)展卷積

然后移除dropout層和fc8層,并新增一系列卷積層,在檢測(cè)數(shù)據(jù)集上做finetuing。

其中VGG16中的Conv4_3層將作為用于檢測(cè)的第一個(gè)特征圖。conv4_3層特征圖大小是,但是該層比較靠前,其norm較大,所以在其后面增加了一個(gè)L2 Normalization層(參見(jiàn)ParseNet),以保證和后面的檢測(cè)層差異不是很大,這個(gè)和Batch Normalization層不太一樣,其僅僅是對(duì)每個(gè)像素點(diǎn)在channle維度做歸一化,而B(niǎo)atch Normalization層是在[batch_size, width, height]三個(gè)維度上做歸一化。歸一化后一般設(shè)置一個(gè)可訓(xùn)練的放縮變量gamma,使用TF可以這樣簡(jiǎn)單實(shí)現(xiàn):

# l2norm (not bacth norm, spatial normalization)def l2norm(x, scale, trainable=True, scope="L2Normalization"): n_channels = x.get_shape().as_list()[-1] l2_norm = tf.nn.l2_normalize(x, [3], epsilon=1e-12) with tf.variable_scope(scope): gamma = tf.get_variable("gamma", shape=[n_channels, ], dtype=tf.float32, initializer=tf.constant_initializer(scale), trainable=trainable) return l2_norm * gamma

從后面新增的卷積層中提取Conv7,Conv8_2,Conv9_2,Conv10_2,Conv11_2作為檢測(cè)所用的特征圖,加上Conv4_3層,共提取了6個(gè)特征圖,其大小分別是,但是不同特征圖設(shè)置的先驗(yàn)框數(shù)目不同(同一個(gè)特征圖上每個(gè)單元設(shè)置的先驗(yàn)框是相同的,這里的數(shù)目指的是一個(gè)單元的先驗(yàn)框數(shù)目)。先驗(yàn)框的設(shè)置,包括尺度(或者說(shuō)大?。┖烷L(zhǎng)寬比兩個(gè)方面。對(duì)于先驗(yàn)框的尺度,其遵守一個(gè)線性遞增規(guī)則:隨著特征圖大小降低,先驗(yàn)框尺度線性增加:

其中指的特征圖個(gè)數(shù),但卻是,因?yàn)榈谝粚樱–onv4_3層)是單獨(dú)設(shè)置的,表示先驗(yàn)框大小相對(duì)于圖片的比例,而和表示比例的最小值與最大值,paper里面取0.2和0.9。對(duì)于第一個(gè)特征圖,其先驗(yàn)框的尺度比例一般設(shè)置為,那么尺度為。對(duì)于后面的特征圖,先驗(yàn)框尺度按照上面公式線性增加,但是先將尺度比例先擴(kuò)大100倍,此時(shí)增長(zhǎng)步長(zhǎng)為,這樣各個(gè)特征圖的為,將這些比例除以100,然后再乘以圖片大小,可以得到各個(gè)特征圖的尺度為,這種計(jì)算方式是參考SSD的Caffe源碼。綜上,可以得到各個(gè)特征圖的先驗(yàn)框尺度。對(duì)于長(zhǎng)寬比,一般選取,對(duì)于特定的長(zhǎng)寬比,按如下公式計(jì)算先驗(yàn)框的寬度與高度(后面的均指的是先驗(yàn)框?qū)嶋H尺度,而不是尺度比例):

默認(rèn)情況下,每個(gè)特征圖會(huì)有一個(gè)且尺度為的先驗(yàn)框,除此之外,還會(huì)設(shè)置一個(gè)尺度為且的先驗(yàn)框,這樣每個(gè)特征圖都設(shè)置了兩個(gè)長(zhǎng)寬比為1但大小不同的正方形先驗(yàn)框。注意最后一個(gè)特征圖需要參考一個(gè)虛擬來(lái)計(jì)算。因此,每個(gè)特征圖一共有個(gè)先驗(yàn)框,但是在實(shí)現(xiàn)時(shí),Conv4_3,Conv10_2和Conv11_2層僅使用4個(gè)先驗(yàn)框,它們不使用長(zhǎng)寬比為的先驗(yàn)框。每個(gè)單元的先驗(yàn)框的中心點(diǎn)分布在各個(gè)單元的中心,即,其中為特征圖的大小。

得到了特征圖之后,需要對(duì)特征圖進(jìn)行卷積得到檢測(cè)結(jié)果,圖7給出了一個(gè)大小的特征圖的檢測(cè)過(guò)程。其中Priorbox是得到先驗(yàn)框,前面已經(jīng)介紹了生成規(guī)則。檢測(cè)值包含兩個(gè)部分:類別置信度和邊界框位置,各采用一次卷積來(lái)進(jìn)行完成。令為該特征圖所采用的先驗(yàn)框數(shù)目,那么類別置信度需要的卷積核數(shù)量為,而邊界框位置需要的卷積核數(shù)量為。由于每個(gè)先驗(yàn)框都會(huì)預(yù)測(cè)一個(gè)邊界框,所以SSD300一共可以預(yù)測(cè)個(gè)邊界框,這是一個(gè)相當(dāng)龐大的數(shù)字,所以說(shuō)SSD本質(zhì)上是密集采樣。

圖7 基于卷積得到檢測(cè)結(jié)果訓(xùn)練過(guò)程

(1)先驗(yàn)框匹配
在訓(xùn)練過(guò)程中,首先要確定訓(xùn)練圖片中的ground truth(真實(shí)目標(biāo))與哪個(gè)先驗(yàn)框來(lái)進(jìn)行匹配,與之匹配的先驗(yàn)框所對(duì)應(yīng)的邊界框?qū)⒇?fù)責(zé)預(yù)測(cè)它。在Yolo中,ground truth的中心落在哪個(gè)單元格,該單元格中與其IOU最大的邊界框負(fù)責(zé)預(yù)測(cè)它。但是在SSD中卻完全不一樣,SSD的先驗(yàn)框與ground truth的匹配原則主要有兩點(diǎn)。首先,對(duì)于圖片中每個(gè)ground truth,找到與其IOU最大的先驗(yàn)框,該先驗(yàn)框與其匹配,這樣,可以保證每個(gè)ground truth一定與某個(gè)先驗(yàn)框匹配。通常稱與ground truth匹配的先驗(yàn)框?yàn)檎龢颖荆ㄆ鋵?shí)應(yīng)該是先驗(yàn)框?qū)?yīng)的預(yù)測(cè)box,不過(guò)由于是一一對(duì)應(yīng)的就這樣稱呼了),反之,若一個(gè)先驗(yàn)框沒(méi)有與任何ground truth進(jìn)行匹配,那么該先驗(yàn)框只能與背景匹配,就是負(fù)樣本。一個(gè)圖片中g(shù)round truth是非常少的, 而先驗(yàn)框卻很多,如果僅按第一個(gè)原則匹配,很多先驗(yàn)框會(huì)是負(fù)樣本,正負(fù)樣本極其不平衡,所以需要第二個(gè)原則。第二個(gè)原則是:對(duì)于剩余的未匹配先驗(yàn)框,若某個(gè)ground truth的大于某個(gè)閾值(一般是0.5),那么該先驗(yàn)框也與這個(gè)ground truth進(jìn)行匹配。這意味著某個(gè)ground truth可能與多個(gè)先驗(yàn)框匹配,這是可以的。但是反過(guò)來(lái)卻不可以,因?yàn)橐粋€(gè)先驗(yàn)框只能匹配一個(gè)ground truth,如果多個(gè)ground truth與某個(gè)先驗(yàn)框大于閾值,那么先驗(yàn)框只與IOU最大的那個(gè)ground truth進(jìn)行匹配。第二個(gè)原則一定在第一個(gè)原則之后進(jìn)行,仔細(xì)考慮一下這種情況,如果某個(gè)ground truth所對(duì)應(yīng)最大小于閾值,并且所匹配的先驗(yàn)框卻與另外一個(gè)ground truth的大于閾值,那么該先驗(yàn)框應(yīng)該匹配誰(shuí),答案應(yīng)該是前者,首先要確保某個(gè)ground truth一定有一個(gè)先驗(yàn)框與之匹配。但是,這種情況我覺(jué)得基本上是不存在的。由于先驗(yàn)框很多,某個(gè)ground truth的最大肯定大于閾值,所以可能只實(shí)施第二個(gè)原則既可以了,這里的TensorFlow版本就是只實(shí)施了第二個(gè)原則,但是這里的Pytorch兩個(gè)原則都實(shí)施了。圖8為一個(gè)匹配示意圖,其中綠色的GT是ground truth,紅色為先驗(yàn)框,F(xiàn)P表示負(fù)樣本,TP表示正樣本。

圖8 先驗(yàn)框匹配示意圖

盡管一個(gè)ground truth可以與多個(gè)先驗(yàn)框匹配,但是ground truth相對(duì)先驗(yàn)框還是太少了,所以負(fù)樣本相對(duì)正樣本會(huì)很多。為了保證正負(fù)樣本盡量平衡,SSD采用了hard negative mining,就是對(duì)負(fù)樣本進(jìn)行抽樣,抽樣時(shí)按照置信度誤差(預(yù)測(cè)背景的置信度越小,誤差越大)進(jìn)行降序排列,選取誤差的較大的top-k作為訓(xùn)練的負(fù)樣本,以保證正負(fù)樣本比例接近1:3。

(2)損失函數(shù)
訓(xùn)練樣本確定了,然后就是損失函數(shù)了。損失函數(shù)定義為位置誤差(locatization loss, loc)與置信度誤差(confidence loss, conf)的加權(quán)和:

其中是先驗(yàn)框的正樣本數(shù)量。這里為一個(gè)指示參數(shù),當(dāng)時(shí)表示第個(gè)先驗(yàn)框與第個(gè)ground truth匹配,并且ground truth的類別為。為類別置信度預(yù)測(cè)值。為先驗(yàn)框的所對(duì)應(yīng)邊界框的位置預(yù)測(cè)值,而是ground truth的位置參數(shù)。對(duì)于位置誤差,其采用Smooth L1 loss,定義如下:

1d7a41e4-88ef-11eb-8b86-12bb97331649.jpg

1da9cad6-88ef-11eb-8b86-12bb97331649.jpg

由于的存在,所以位置誤差僅針對(duì)正樣本進(jìn)行計(jì)算。值得注意的是,要先對(duì)ground truth的進(jìn)行編碼得到,因?yàn)轭A(yù)測(cè)值也是編碼值,若設(shè)置variance_encoded_in_target=True,編碼時(shí)要加上variance:

對(duì)于置信度誤差,其采用softmax loss:

1ddec74a-88ef-11eb-8b86-12bb97331649.jpg

權(quán)重系數(shù)通過(guò)交叉驗(yàn)證設(shè)置為1。

(3)數(shù)據(jù)擴(kuò)增

采用數(shù)據(jù)擴(kuò)增(Data Augmentation)可以提升SSD的性能,主要采用的技術(shù)有水平翻轉(zhuǎn)(horizontal flip),隨機(jī)裁剪加顏色扭曲(random crop & color distortion),隨機(jī)采集塊域(Randomly sample a patch)(獲取小目標(biāo)訓(xùn)練樣本),如下圖所示:

圖9 數(shù)據(jù)擴(kuò)增方案

其它的訓(xùn)練細(xì)節(jié)如學(xué)習(xí)速率的選擇詳見(jiàn)論文,這里不再贅述。

預(yù)測(cè)過(guò)程

預(yù)測(cè)過(guò)程比較簡(jiǎn)單,對(duì)于每個(gè)預(yù)測(cè)框,首先根據(jù)類別置信度確定其類別(置信度最大者)與置信度值,并過(guò)濾掉屬于背景的預(yù)測(cè)框。然后根據(jù)置信度閾值(如0.5)過(guò)濾掉閾值較低的預(yù)測(cè)框。對(duì)于留下的預(yù)測(cè)框進(jìn)行解碼,根據(jù)先驗(yàn)框得到其真實(shí)的位置參數(shù)(解碼后一般還需要做clip,防止預(yù)測(cè)框位置超出圖片)。解碼之后,一般需要根據(jù)置信度進(jìn)行降序排列,然后僅保留top-k(如400)個(gè)預(yù)測(cè)框。最后就是進(jìn)行NMS算法,過(guò)濾掉那些重疊度較大的預(yù)測(cè)框。最后剩余的預(yù)測(cè)框就是檢測(cè)結(jié)果了。

性能評(píng)估

首先整體看一下SSD在VOC2007,VOC2012及COCO數(shù)據(jù)集上的性能,如表1所示。相比之下,SSD512的性能會(huì)更好一些。加*的表示使用了image expansion data augmentation(通過(guò)zoom out來(lái)創(chuàng)造小的訓(xùn)練樣本)技巧來(lái)提升SSD在小目標(biāo)上的檢測(cè)效果,所以性能會(huì)有所提升。

1e911116-88ef-11eb-8b86-12bb97331649.jpg

表1 SSD在不同數(shù)據(jù)集上的性能

SSD與其它檢測(cè)算法的對(duì)比結(jié)果(在VOC2007數(shù)據(jù)集)如表2所示,基本可以看到,SSD與Faster R-CNN有同樣的準(zhǔn)確度,并且與Yolo具有同樣較快地檢測(cè)速度。

1ec5d324-88ef-11eb-8b86-12bb97331649.jpg

表2 SSD與其它檢測(cè)算法的對(duì)比結(jié)果(在VOC2007數(shù)據(jù)集)

文章還對(duì)SSD的各個(gè)trick做了更為細(xì)致的分析,表3為不同的trick組合對(duì)SSD的性能影響,從表中可以得出如下結(jié)論:

數(shù)據(jù)擴(kuò)增技術(shù)很重要,對(duì)于mAP的提升很大;

使用不同長(zhǎng)寬比的先驗(yàn)框可以得到更好的結(jié)果;

1f202fae-88ef-11eb-8b86-12bb97331649.jpg

表3 不同的trick組合對(duì)SSD的性能影響

同樣的,采用多尺度的特征圖用于檢測(cè)也是至關(guān)重要的,這可以從表4中看出:

1f42005c-88ef-11eb-8b86-12bb97331649.jpg

表4 多尺度特征圖對(duì)SSD的影響TensorFlow上的實(shí)現(xiàn)

SSD在很多框架上都有了開(kāi)源的實(shí)現(xiàn),這里基于balancap的TensorFlow版本來(lái)實(shí)現(xiàn)SSD的Inference過(guò)程。這里實(shí)現(xiàn)的是SSD300,與paper里面不同的是,這里采用。首先定義SSD的參數(shù):

self.ssd_params = SSDParams(img_shape=(300, 300), # 輸入圖片大小 num_classes=21, # 類別數(shù)+背景 no_annotation_label=21, feat_layers=["block4", "block7", "block8", "block9", "block10", "block11"], # 要進(jìn)行檢測(cè)的特征圖name feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)], # 特征圖大小 anchor_size_bounds=[0.15, 0.90], # 特征圖尺度范圍 anchor_sizes=[(21., 45.), (45., 99.), (99., 153.), (153., 207.), (207., 261.), (261., 315.)], # 不同特征圖的先驗(yàn)框尺度(第一個(gè)值是s_k,第2個(gè)值是s_k+1) anchor_ratios=[[2, .5], [2, .5, 3, 1. / 3], [2, .5, 3, 1. / 3], [2, .5, 3, 1. / 3], [2, .5], [2, .5]], # 特征圖先驗(yàn)框所采用的長(zhǎng)寬比(每個(gè)特征圖都有2個(gè)正方形先驗(yàn)框) anchor_steps=[8, 16, 32, 64, 100, 300], # 特征圖的單元大小 anchor_offset=0.5, # 偏移值,確定先驗(yàn)框中心 normalizations=[20, -1, -1, -1, -1, -1], # l2 norm prior_scaling=[0.1, 0.1, 0.2, 0.2] # variance )

然后構(gòu)建整個(gè)網(wǎng)絡(luò),注意對(duì)于stride=2的conv不要使用TF自帶的padding="same",而是手動(dòng)pad,這是為了與Caffe一致:

def _built_net(self): """Construct the SSD net""" self.end_points = {} # record the detection layers output self._images = tf.placeholder(tf.float32, shape=[None, self.ssd_params.img_shape[0], self.ssd_params.img_shape[1], 3]) with tf.variable_scope("ssd_300_vgg"): # original vgg layers # block 1 net = conv2d(self._images, 64, 3, scope="conv1_1") net = conv2d(net, 64, 3, scope="conv1_2") self.end_points["block1"] = net net = max_pool2d(net, 2, scope="pool1") # block 2 net = conv2d(net, 128, 3, scope="conv2_1") net = conv2d(net, 128, 3, scope="conv2_2") self.end_points["block2"] = net net = max_pool2d(net, 2, scope="pool2") # block 3 net = conv2d(net, 256, 3, scope="conv3_1") net = conv2d(net, 256, 3, scope="conv3_2") net = conv2d(net, 256, 3, scope="conv3_3") self.end_points["block3"] = net net = max_pool2d(net, 2, scope="pool3") # block 4 net = conv2d(net, 512, 3, scope="conv4_1") net = conv2d(net, 512, 3, scope="conv4_2") net = conv2d(net, 512, 3, scope="conv4_3") self.end_points["block4"] = net net = max_pool2d(net, 2, scope="pool4") # block 5 net = conv2d(net, 512, 3, scope="conv5_1") net = conv2d(net, 512, 3, scope="conv5_2") net = conv2d(net, 512, 3, scope="conv5_3") self.end_points["block5"] = net print(net) net = max_pool2d(net, 3, stride=1, scope="pool5") print(net) # additional SSD layers # block 6: use dilate conv net = conv2d(net, 1024, 3, dilation_rate=6, scope="conv6") self.end_points["block6"] = net #net = dropout(net, is_training=self.is_training) # block 7 net = conv2d(net, 1024, 1, scope="conv7") self.end_points["block7"] = net # block 8 net = conv2d(net, 256, 1, scope="conv8_1x1") net = conv2d(pad2d(net, 1), 512, 3, stride=2, scope="conv8_3x3", padding="valid") self.end_points["block8"] = net # block 9 net = conv2d(net, 128, 1, scope="conv9_1x1") net = conv2d(pad2d(net, 1), 256, 3, stride=2, scope="conv9_3x3", padding="valid") self.end_points["block9"] = net # block 10 net = conv2d(net, 128, 1, scope="conv10_1x1") net = conv2d(net, 256, 3, scope="conv10_3x3", padding="valid") self.end_points["block10"] = net # block 11 net = conv2d(net, 128, 1, scope="conv11_1x1") net = conv2d(net, 256, 3, scope="conv11_3x3", padding="valid") self.end_points["block11"] = net # class and location predictions predictions = [] logits = [] locations = [] for i, layer in enumerate(self.ssd_params.feat_layers): cls, loc = ssd_multibox_layer(self.end_points[layer], self.ssd_params.num_classes, self.ssd_params.anchor_sizes[i], self.ssd_params.anchor_ratios[i], self.ssd_params.normalizations[i], scope=layer+"_box") predictions.append(tf.nn.softmax(cls)) logits.append(cls) locations.append(loc) return predictions, logits, locations

對(duì)于特征圖的檢測(cè),這里單獨(dú)定義了一個(gè)組合層ssd_multibox_layer,其主要是對(duì)特征圖進(jìn)行兩次卷積,分別得到類別置信度與邊界框位置:

# multibox layer: get class and location predicitions from detection layer def ssd_multibox_layer(x, num_classes, sizes, ratios, normalization=-1, scope="multibox"): pre_shape = x.get_shape().as_list()[1:-1] pre_shape = [-1] + pre_shape with tf.variable_scope(scope): # l2 norm if normalization > 0: x = l2norm(x, normalization) print(x) # numbers of anchors n_anchors = len(sizes) + len(ratios) # location predictions loc_pred = conv2d(x, n_anchors*4, 3, activation=None, scope="conv_loc") loc_pred = tf.reshape(loc_pred, pre_shape + [n_anchors, 4]) # class prediction cls_pred = conv2d(x, n_anchors*num_classes, 3, activation=None, scope="conv_cls") cls_pred = tf.reshape(cls_pred, pre_shape + [n_anchors, num_classes]) return cls_pred, loc_pred

對(duì)于先驗(yàn)框,可以基于numpy生成,定義在ssd_anchors.py文件中,結(jié)合先驗(yàn)框與檢測(cè)值,對(duì)邊界框進(jìn)行過(guò)濾與解碼:

classes, scores, bboxes = self._bboxes_select(predictions, locations)

這里將得到過(guò)濾得到的邊界框,其中classes, scores, bboxes分別表示類別,置信度值以及邊界框位置。

基于訓(xùn)練好的權(quán)重文件在https://pan.baidu.com/s/1snhuTsT下載,這里對(duì)SSD進(jìn)行測(cè)試:

ssd_net = SSD()classes, scores, bboxes = ssd_net.detections()images = ssd_net.images() sess = tf.Session()# Restore SSD model.ckpt_filename = './ssd_checkpoints/ssd_vgg_300_weights.ckpt'sess.run(tf.global_variables_initializer())saver = tf.train.Saver()saver.restore(sess, ckpt_filename) img = cv2.imread('./demo/dog.jpg')img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)img_prepocessed = preprocess_image(img) # 預(yù)處理圖片,主要是歸一化和resizerclasses, rscores, rbboxes = sess.run([classes, scores, bboxes], feed_dict={images: img_prepocessed})rclasses, rscores, rbboxes = process_bboxes(rclasses, rscores, rbboxes) # 處理預(yù)測(cè)框,包括clip,sort,nms plt_bboxes(img, rclasses, rscores, rbboxes) # 繪制檢測(cè)結(jié)果

詳細(xì)的代碼放在GitHub,https://github.com/xiaohu2015/DeepLearning_tutorials/tree/master/ObjectDetections/SSD上了,然后看一下一個(gè)自然圖片的檢測(cè)效果:

如果你想實(shí)現(xiàn)SSD的train過(guò)程,你可以參考附錄里面的Caffe,TensorFlow以及Pytorch實(shí)現(xiàn)。

小結(jié)

SSD在Yolo的基礎(chǔ)上主要改進(jìn)了三點(diǎn):多尺度特征圖,利用卷積進(jìn)行檢測(cè),設(shè)置先驗(yàn)框。這使得SSD在準(zhǔn)確度上比Yolo更好,而且對(duì)于小目標(biāo)檢測(cè)效果也相對(duì)好一點(diǎn)。由于很多實(shí)現(xiàn)細(xì)節(jié)都包含在源碼里面,文中有描述不準(zhǔn)或者錯(cuò)誤的地方在所難免,歡迎交流指正。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4612

    瀏覽量

    92910
  • SSD
    SSD
    +關(guān)注

    關(guān)注

    21

    文章

    2862

    瀏覽量

    117435
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    352

    瀏覽量

    22217

原文標(biāo)題:目標(biāo)檢測(cè)|SSD原理與實(shí)現(xiàn)

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    芯片封裝工藝詳細(xì)講解

    芯片封裝工藝詳細(xì)講解
    發(fā)表于 11-29 14:02 ?1次下載

    Huffman壓縮算法概述和詳細(xì)流程

    Huffman壓縮算法是一種基于字符出現(xiàn)頻率的編碼算法,通過(guò)構(gòu)建Huffman樹(shù),將出現(xiàn)頻率高的字符用短編碼表示,出現(xiàn)頻率低的字符用長(zhǎng)編碼表示,從而實(shí)現(xiàn)對(duì)數(shù)據(jù)的壓縮。
    的頭像 發(fā)表于 10-21 13:48 ?277次閱讀

    電感技術(shù)的講解

    詳細(xì)講解電感的原理及計(jì)算
    的頭像 發(fā)表于 09-06 02:07 ?2180次閱讀
    電感技術(shù)的<b class='flag-5'>講解</b>

    第12章-ADC采集電壓和顯示 基于STM32的ADC—電壓采集(詳細(xì)講解+HAL庫(kù))

    第12章-ADC采集電壓和顯示 基于STM32的ADC—電壓采集(詳細(xì)講解+HAL庫(kù))
    的頭像 發(fā)表于 08-21 16:31 ?2589次閱讀
    第12章-ADC采集電壓和顯示 基于STM32的ADC—電壓采集(<b class='flag-5'>詳細(xì)</b><b class='flag-5'>講解</b>+HAL庫(kù))

    第13章-循跡功能 STM32智能小車循跡教程 PID循跡算法分析

    第13章-循跡功能 循跡小車講解 原理分析 STM32智能小車循跡教程 紅外對(duì)管使用 PID循跡算法分析V3:HAL庫(kù)開(kāi)發(fā)、功能:PID速度控制、PID循跡、PID跟隨、遙控、避障、PID角度控制
    的頭像 發(fā)表于 08-21 16:27 ?1512次閱讀
    第13章-循跡功能 STM32智能小車循跡教程 PID循跡<b class='flag-5'>算法</b>分析

    bp神經(jīng)網(wǎng)絡(luò)算法的基本流程包括哪些

    BP神經(jīng)網(wǎng)絡(luò)算法,即反向傳播神經(jīng)網(wǎng)絡(luò)算法,是一種常用的多層前饋神經(jīng)網(wǎng)絡(luò)訓(xùn)練算法。它通過(guò)反向傳播誤差來(lái)調(diào)整網(wǎng)絡(luò)的權(quán)重和偏置,從而實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類或回歸。下面詳細(xì)介紹BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 09:47 ?648次閱讀

    神經(jīng)網(wǎng)絡(luò)優(yōu)化算法有哪些

    神經(jīng)網(wǎng)絡(luò)優(yōu)化算法是深度學(xué)習(xí)領(lǐng)域中的核心技術(shù)之一,旨在通過(guò)調(diào)整網(wǎng)絡(luò)中的參數(shù)(如權(quán)重和偏差)來(lái)最小化損失函數(shù),從而提高模型的性能和效率。本文將詳細(xì)探討神經(jīng)網(wǎng)絡(luò)優(yōu)化算法的基本原理、主要方法、變體、以及在實(shí)際應(yīng)用中的注意事項(xiàng)和最新進(jìn)展。
    的頭像 發(fā)表于 07-03 16:01 ?550次閱讀

    BLDC電機(jī)控制算法詳解

    算法。本文將詳細(xì)介紹BLDC電機(jī)的控制算法,包括電速算法、電流環(huán)控制算法、磁場(chǎng)導(dǎo)向控制算法等,并
    的頭像 發(fā)表于 06-14 10:49 ?1060次閱讀

    常用的電機(jī)控制算法有哪些

    在電機(jī)控制領(lǐng)域,選擇合適的控制算法對(duì)于實(shí)現(xiàn)高效、精確且穩(wěn)定的電機(jī)運(yùn)行至關(guān)重要。以下將詳細(xì)介紹幾種常用的電機(jī)控制算法,并通過(guò)具體的分析和實(shí)例,探討它們的特點(diǎn)、應(yīng)用以及優(yōu)勢(shì)。
    的頭像 發(fā)表于 06-05 16:31 ?2359次閱讀

    foxbot基本操作與應(yīng)用講解

    電子發(fā)燒友網(wǎng)站提供《foxbot基本操作與應(yīng)用講解.pptx》資料免費(fèi)下載
    發(fā)表于 05-11 09:34 ?1次下載

    淺析FreeRTOS任務(wù)調(diào)度器的三種調(diào)度算法和應(yīng)用

    FreeRTOS在MCU領(lǐng)域應(yīng)用非常廣泛,今天就給大家講解一下FreeRTOS調(diào)度器中的三種調(diào)度算法,以及在瑞薩RZ/T2L MPU中的應(yīng)用。
    的頭像 發(fā)表于 05-10 14:02 ?7447次閱讀
    淺析FreeRTOS任務(wù)調(diào)度器的三種調(diào)度<b class='flag-5'>算法</b>和應(yīng)用

    基于FPGA的常見(jiàn)的圖像算法模塊總結(jié)

    意在給大家補(bǔ)充一下基于FPGA的圖像算法基礎(chǔ),于是講解了一下常見(jiàn)的圖像算法模塊,經(jīng)過(guò)個(gè)人的總結(jié),將知識(shí)點(diǎn)分布如下所示。
    的頭像 發(fā)表于 04-28 11:45 ?602次閱讀
    基于FPGA的常見(jiàn)的圖像<b class='flag-5'>算法</b>模塊總結(jié)

    FreeRTOS任務(wù)調(diào)度器的三種調(diào)度算法講解(下)

    配置如下時(shí),調(diào)度算法就會(huì)變成不帶時(shí)間片的搶占式調(diào)度
    的頭像 發(fā)表于 03-21 13:46 ?2854次閱讀
    FreeRTOS任務(wù)調(diào)度器的三種調(diào)度<b class='flag-5'>算法</b><b class='flag-5'>講解</b>(下)

    AC電機(jī)控制算法是什么

    AC電機(jī)控制算法是一種用于控制交流電機(jī)運(yùn)行的技術(shù),它可以實(shí)現(xiàn)對(duì)電機(jī)的啟動(dòng)、停止、速度調(diào)節(jié)和位置控制等功能。本文將對(duì)AC電機(jī)控制算法的原理、分類和應(yīng)用進(jìn)行詳細(xì)介紹。 一、AC電機(jī)控制算法
    的頭像 發(fā)表于 01-11 11:21 ?1089次閱讀
    AC電機(jī)控制<b class='flag-5'>算法</b>是什么

    詳細(xì)講解Altium Designer 23的安裝教程

    在PCB設(shè)計(jì)中,軟件的安裝是我們邁出的第一步,接下來(lái)將詳細(xì)講解Altium Designer 23安裝教程。
    的頭像 發(fā)表于 01-09 10:02 ?9213次閱讀
    <b class='flag-5'>詳細(xì)</b><b class='flag-5'>講解</b>Altium Designer 23的安裝教程