0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

MIT成功研發(fā)液態(tài)神經(jīng)網(wǎng)絡

如意 ? 來源:cnBeta.COM ? 作者:cnBeta.COM ? 2021-01-29 11:32 ? 次閱讀

想要適應自動駕駛、控制機器人、醫(yī)療診斷等場景,就必須讓神經(jīng)網(wǎng)絡適應快速變化的各種狀況。好消息是,麻省理工(MIT)計算機科學與人工智能實驗室(CSAIL)的 Ramin Hasani 團隊,已經(jīng)設計出了一種具有重大改進的“液態(tài)”神經(jīng)網(wǎng)絡。其特點是能夠在投入訓練階段之后,極大地擴展 AI 技術的靈活性。

通常情況下,研究人員會在訓練階段向神經(jīng)網(wǎng)絡算法提供大量相關的目標數(shù)據(jù),來磨煉其推理能力。

期間通過對正確的響應加以獎勵,以優(yōu)化其性能。然而傳統(tǒng)的訓練方案,明顯還是過于“刻板”了。

有鑒于此,Ramin Hasani 與團隊成員合作開發(fā)了一套新方法,讓神經(jīng)網(wǎng)絡可以像“液體”一樣,隨著時間的流逝而更好地適應“正確”的新信息。

舉個例子,如果無人駕駛汽車上的感知神經(jīng)網(wǎng)絡能夠分辨晴朗的天空和大雪等環(huán)境,就可以更好地順應情況的變化、并維持較高的性能。

這項新研究的主要特點,是側(cè)重于時間序列的適應性。比之建立于訓練數(shù)據(jù)的多快照或時間上的靜態(tài)時刻,可流動的液態(tài)神經(jīng)網(wǎng)絡可以將時間序列或圖像序列也考慮進來,而不是孤立的各個片段。

得益于這種系統(tǒng)設計方法,與傳統(tǒng)神經(jīng)網(wǎng)絡相比,MIT 的液態(tài)系統(tǒng)實際上更便于開展觀察研究。

前一種 AI 通常被稱作‘黑盒’,盡管算法開發(fā)者明確知曉輸入信息的判定準則,但通常無法確定其中到底發(fā)生了什么。

而液態(tài)神經(jīng)網(wǎng)絡在這部分提升了透明度、對復雜計算節(jié)點的依賴性也更少,因此還具有相當不錯的成本優(yōu)勢。

最終結(jié)果表明,在預測已知數(shù)據(jù)集的未來值方面,液態(tài)神經(jīng)網(wǎng)絡的準確性要顯著優(yōu)于其它替代方案。

下一步,Hasani 將與團隊成員繼續(xù)改進液態(tài)神經(jīng)網(wǎng)絡的性能表現(xiàn),并努力將之推向?qū)嶋H應用。
責編AJX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡

    關注

    42

    文章

    4772

    瀏覽量

    100809
  • 液態(tài)
    +關注

    關注

    0

    文章

    10

    瀏覽量

    7180
  • MIT
    MIT
    +關注

    關注

    3

    文章

    253

    瀏覽量

    23407
收藏 人收藏

    評論

    相關推薦

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:53 ?483次閱讀

    BP神經(jīng)網(wǎng)絡和卷積神經(jīng)網(wǎng)絡的關系

    BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學習領域
    的頭像 發(fā)表于 07-10 15:24 ?1560次閱讀

    BP神經(jīng)網(wǎng)絡和人工神經(jīng)網(wǎng)絡的區(qū)別

    BP神經(jīng)網(wǎng)絡和人工神經(jīng)網(wǎng)絡(Artificial Neural Networks,簡稱ANNs)之間的關系與區(qū)別,是神經(jīng)網(wǎng)絡領域中一個基礎且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應用及未來發(fā)展等多個方面,詳細闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?1115次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡還是循環(huán)神經(jīng)網(wǎng)絡

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡,而非遞歸神經(jīng)網(wǎng)絡。循環(huán)神經(jīng)網(wǎng)絡是一種具有時間序列特性的神經(jīng)網(wǎng)絡,能夠處理序列數(shù)據(jù),具有記憶功能。以下是關于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?585次閱讀

    遞歸神經(jīng)網(wǎng)絡是循環(huán)神經(jīng)網(wǎng)絡

    遞歸神經(jīng)網(wǎng)絡(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?789次閱讀

    循環(huán)神經(jīng)網(wǎng)絡和卷積神經(jīng)網(wǎng)絡的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,CNN)是深度學習領域中兩種非常重要的神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-04 14:24 ?1314次閱讀

    深度神經(jīng)網(wǎng)絡與基本神經(jīng)網(wǎng)絡的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(通常指傳統(tǒng)神經(jīng)網(wǎng)絡或前向神經(jīng)網(wǎng)絡)的區(qū)別時,我們需要從多個維度進行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?898次閱讀

    卷積神經(jīng)網(wǎng)絡與循環(huán)神經(jīng)網(wǎng)絡的區(qū)別

    在深度學習領域,卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Networks, RNN)是兩種極其重要
    的頭像 發(fā)表于 07-03 16:12 ?3352次閱讀

    反向傳播神經(jīng)網(wǎng)絡和bp神經(jīng)網(wǎng)絡的區(qū)別

    反向傳播神經(jīng)網(wǎng)絡(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡)是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法來調(diào)整網(wǎng)絡中的權重和偏置,以達到最小化誤差的
    的頭像 發(fā)表于 07-03 11:00 ?819次閱讀

    bp神經(jīng)網(wǎng)絡是深度神經(jīng)網(wǎng)絡

    BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡,它使用反向傳播算法來訓練網(wǎng)絡。雖然BP神經(jīng)網(wǎng)絡在某些方面與深度
    的頭像 發(fā)表于 07-03 10:14 ?860次閱讀

    bp神經(jīng)網(wǎng)絡和卷積神經(jīng)網(wǎng)絡區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡,它們在
    的頭像 發(fā)表于 07-03 10:12 ?1207次閱讀

    卷積神經(jīng)網(wǎng)絡的原理是什么

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、語音識別、自然語言處理等領域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡的原理,包括其
    的頭像 發(fā)表于 07-02 14:44 ?667次閱讀

    卷積神經(jīng)網(wǎng)絡和bp神經(jīng)網(wǎng)絡的區(qū)別

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4123次閱讀

    深度神經(jīng)網(wǎng)絡模型有哪些

    深度神經(jīng)網(wǎng)絡(Deep Neural Networks,DNNs)是一類具有多個隱藏層的神經(jīng)網(wǎng)絡,它們在許多領域取得了顯著的成功,如計算機視覺、自然語言處理、語音識別等。以下是一些常見的深度
    的頭像 發(fā)表于 07-02 10:00 ?1464次閱讀

    神經(jīng)網(wǎng)絡架構(gòu)有哪些

    神經(jīng)網(wǎng)絡架構(gòu)是機器學習領域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡的運作方式,通過復雜的網(wǎng)絡結(jié)構(gòu)實現(xiàn)信息的處理、存儲和傳遞。隨著深度學習技術的不斷發(fā)展,各種神經(jīng)網(wǎng)絡架構(gòu)被提出并廣泛應用
    的頭像 發(fā)表于 07-01 14:16 ?718次閱讀