0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

為什么要進行傅里葉、拉普拉斯和Z變換?

Q4MP_gh_c472c21 ? 來源:嵌入式客棧 ? 作者:逸珺 ? 2021-02-10 09:46 ? 次閱讀

導(dǎo)讀:在知乎上看到一個問題,傅里葉變換、拉普拉斯變換、Z 變換的聯(lián)系是什么?為什么要進行這些變換?我覺得這是一個非常好的問題,貌似一下子也回答不上來,所以整理學(xué)習(xí)并分享一下。

什么是數(shù)學(xué)變換?

要理解這些變換,首先需要理解什么是數(shù)學(xué)變換!如果不理解什么是數(shù)學(xué)變換的概念,那么其他的概念我覺得也沒有理解。

數(shù)學(xué)變換是指數(shù)學(xué)函數(shù)從原向量空間在自身函數(shù)空間變換,或映射到另一個函數(shù)空間,或?qū)τ诩蟈到其自身(比如線性變換)或從X到另一個集合Y的可逆變換函數(shù)。比如(圖片來源wikipedia):

數(shù)學(xué)中還有很多其他的數(shù)學(xué)變換,其本質(zhì)都可以看成是將函數(shù)f(x)利用變換因子進行的一種數(shù)學(xué)映射,其變換結(jié)果是函數(shù)的自變量有可能還是原來的幾何向量空間,或許會變成其他的幾何向量空間,比如傅立葉變換就從時域變換為頻域。

而傅立葉變換和拉普拉斯變換的本質(zhì)都是對連續(xù)或有限個第一類間斷點函數(shù)的一種積分變換,那么什么是積分變換呢?

什么是積分變換?

積分變換通過對原函數(shù)對映射函數(shù)空間自變量在特定區(qū)間進行積分運算,將函數(shù)從其原始函數(shù)空間映射到另一個函數(shù)空間。這樣一來,其中原始函數(shù)的某些屬性在映射函數(shù)空間可能比原始函數(shù)空間更容易表征或分析。通??梢允褂媚孀儞Q將變換后的函數(shù)映射回到原函數(shù)空間,這樣的變換稱為可逆變換。

假定對于函數(shù)為自變量t的函數(shù)f(t),通常積分變換都具有如下類似的范式:

函數(shù)f(t)是該變換的輸入,(Tf)(u)為變換的輸出,因此積分變換一般也稱為一種特定的數(shù)學(xué)運算符。而函數(shù)K(t,u)稱為積分核函數(shù)(kernel function)。

f833a390-57dd-11eb-8b86-12bb97331649.png

這里有一個對稱核函數(shù)的概念,這是什么意思呢?就是將函數(shù)K的兩個自變量交換位置仍然相等:

有的變換可逆,這是什么概念呢?就是變換后通過逆變換,還能還原!

觀察正變換與逆變換,你會發(fā)現(xiàn):

核函數(shù)剛好兩個自變量交換位置

正變換是對原函數(shù)f(t)在時間維度上進行積分

逆變換是在變換后的函數(shù)在u維度上進行積分

什么是傅立葉級數(shù)?

在談傅立葉變換之前,先談?wù)劯盗⑷~級數(shù)會更容易理解傅立葉變換。在數(shù)學(xué)中,傅里葉級數(shù)(Fourier series)是把類似波的函數(shù)表示成簡單正弦波的方式。更正式的說法是,它能將任何周期性函數(shù)或周期性信號分解成一個(可能由無窮個頻率分量組成的)簡單振蕩函數(shù)的集合,即正弦函數(shù)和余弦函數(shù)(或者,等價地使用復(fù)指數(shù)),從數(shù)學(xué)的定義來看:

設(shè)f(t)是一周期信號,假定其周期為T。若f(t)在一個周期的能量是有限的,就是:

則,可以將f(t)展開為傅立葉級數(shù)。怎么展開呢?計算如下:

而傅立葉級數(shù)的系數(shù)由下式計算:

對于f(t),利用歐拉公式還可以寫成正弦函數(shù)與余弦函數(shù)的和,這里就不寫了。歐拉公式如下:

公式中的k表示第k次諧波,這是個什么概念呢?不容易理解,看下對于一個方波的前4次諧波合成動圖就比較好理解了。這里合成的概念是指時域上的疊加的概念,圖片來源wikipedia

f8692db2-57dd-11eb-8b86-12bb97331649.gif

faa20180-57dd-11eb-8b86-12bb97331649.png

從上圖可以直觀看出,周期性方波,可以看成多次諧波的線性疊加,其幅度譜圖,是一根根離散的譜線,且幅度值越來越低,從這個角度可以看出高次諧波的分量,占比越來越小。其譜線的位置為:

第一根為:

第二根為:

第n根為:

其譜線的間隔為

應(yīng)用:這里可以聯(lián)想到我們的電子系統(tǒng)中的時鐘信號,做硬件的朋友或有經(jīng)驗,在做EMC的輻射測試時,發(fā)現(xiàn)產(chǎn)品電路板在某些頻點超標(biāo),有經(jīng)驗的同學(xué)會很快定位到輻射源。其實這里大概率就是因為周期性的時鐘信號造成的,從頻率的角度可以看成是其基頻的多次諧波的線性疊加,而某個諧波分量在電路線路尺寸滿足輻射條件時,就從電路板上脫逸而出,變?yōu)殡姶挪芰肯蚩臻g傳播。所以反向去查該頻率可能對應(yīng)的周期性時鐘信號的基頻就能很快定位到輻射源,從而解決問題。

說到傅立葉級數(shù)是周期性信號可以用傅立葉級數(shù)展開,那么是不是任一周期性信號都可以進行傅立葉級數(shù)展開呢?答案是否定的,必須滿足著名的狄利克雷(Dirichlet)條件:

在一周期內(nèi),如果有間斷點存在,則間斷點的數(shù)目需要是有限個數(shù)

在一周期內(nèi),極大值和極小值的數(shù)目是有限個數(shù)的

在一周期內(nèi),信號或者函數(shù)是絕對可積分的。見前文公式。

什么是傅立葉變換?

前面說了傅立葉級數(shù),接下來再看傅立葉變換。傅立葉變換之所以稱為傅立葉變換,是由于1822年,法國數(shù)學(xué)家傅立葉(J.Fourier) 在研究熱傳導(dǎo)理論時首次證明了將周期函數(shù)展開為傅立葉級數(shù)的理論,并進而不斷發(fā)展成為一個有力的科研分析工具。

假定周期性信號周期T逐漸變大,則譜線間間隔將逐漸變小,如果外推周期T無限放大,變成無窮大,則信號或者函數(shù)就變成非周期信號或函數(shù)了,此時譜線就變成連續(xù)的了,而非一根一根離散的譜線!那么傅立葉變換正是這種一般性的數(shù)學(xué)定義:

對于連續(xù)時間信號f(t),若f(t)在時間維度上可積分,(實際上并不一定是時間t維度,這里可以是任意維度,只需在對應(yīng)維度空間可積分即可),即:

那么,x(t)的傅立葉變換存在,且其計算式為:

其反變換為:

前文說傅立葉變換本質(zhì)上也是一種連續(xù)函數(shù)的積分變換,那么從上面公式,可以看出傅立葉變換的核函數(shù)為:

其核函數(shù)的兩個自變量為t, ,對于一般稱為角速度(可以形象的理解為旋轉(zhuǎn)運動的快慢),是表征頻率空間的。

上面這兩個公式是啥意思呢?在度量空間可積可以理解成其在度量空間能量有限,也即對其自變量積分(相當(dāng)于求面積)是一個確定值,那么這樣的函數(shù)或者信號就可以進行傅立葉變換展開,展開得到的就變成是頻域的函數(shù)了,如果對頻率將函數(shù)值繪制出曲線就是我們所說的頻譜圖,而其逆變換就比較好理解了,如果我們知道一個信號或者函數(shù)譜密度函數(shù),就可以對應(yīng)還原出其時域的函數(shù),也能繪制出時域的波形圖。

傅立葉變換公式,從理解的角度,可以看成無限多無窮小的能量之和,而傅立葉級數(shù)也是各諧波分量的加和,所不同的是,前者相對于頻率變量是連續(xù)的,而后者相對于頻率則是離散的!

當(dāng)然,本文限定討論時域信號是因為我們電子系統(tǒng)中的應(yīng)用最為普遍的就是一個時域信號。推而廣之,其他的多維度信號也能利用上面定義進行推廣,同樣在多維空間信號也非常有應(yīng)用價值,比如2維圖像處理、3維圖像重建等等。

傅立葉級數(shù)與變換的區(qū)別?

傅立葉級數(shù)對應(yīng)的是周期信號,而傅立葉變換則對應(yīng)的是一個時間連續(xù)可積信號(不一定是周期信號)

傅立葉級數(shù)要求信號在一個周期內(nèi)能量有限,而后者則要求在整個區(qū)間能量有限

傅立葉級數(shù)的對應(yīng)是離散的,而傅立葉變換則對應(yīng)是連續(xù)的。

故而,兩者的物理含義不同,且其量綱也是不同的,代表周期信號的第k次諧波幅度的大小,而則是頻譜密度的概念。所以答案是這兩者從本質(zhì)上不是一個概念,傅立葉級數(shù)是周期信號的另一種時域的表達方式,也就是正交級數(shù),它是不同的頻率的波形的時域疊加。而傅立葉變換則是完全的頻域分析,傅里葉級數(shù)適用于對周期性現(xiàn)象做數(shù)學(xué)上的分析,傅里葉變換可以看作傅里葉級數(shù)的極限形式,也可以看作是對周期現(xiàn)象進行數(shù)學(xué)上的分析,同時也適用于非周期性現(xiàn)象的分析。

什么是拉普拉斯變換?

1814年法國數(shù)學(xué)家Pierre-Simon Laplace在研究概率論中給出了拉普拉斯的可靠數(shù)學(xué)依據(jù),從而發(fā)展成拉普拉斯變換理論。對于函數(shù)f(t)我們知道其傅立葉變換為:

那么如果對于函數(shù)其傅立葉變換為:

上面的公式整理一下:

令,則上面的變換

從前文我們知道,拉普拉斯本質(zhì)上也是一種積分變換,那么上面公式,將看成積分變換的核函數(shù),則其變換核函數(shù)為:

上面引入的因子,對于函數(shù)函數(shù)將變得更容易收斂,傅立葉變換的絕對可積分的限制條件也就更容易滿足了。拉普拉斯變換存在的條件為:

傅立葉拉氏變換聯(lián)系區(qū)別

所以傅立葉變換與拉普拉斯變換的聯(lián)系就比較容易聯(lián)系了。

fb2079c0-57dd-11eb-8b86-12bb97331649.png

fb434658-57dd-11eb-8b86-12bb97331649.png

拉普拉斯變換,將原函數(shù)從時間維度(不一定是時間維度,只是方便理解本文以常見的時間維度信號進行描述),映射為復(fù)平面

傅立葉變換是拉普拉斯變換的特例,也即變換核函數(shù)時,拉普拉斯變換就變成傅立葉變換了。相當(dāng)于只取虛部,實部為0.

傅立葉變換是從原維度變換為頻率維度,對于信號處理而言相當(dāng)于將時域信號變換為頻域進行分析,為信號處理提供了強大的數(shù)學(xué)理論基礎(chǔ)及工具。

拉普拉斯變換,將原維度變換為復(fù)頻域,在電子電路分析以及控制理論中,為建立系統(tǒng)的數(shù)學(xué)描述提供了強大的數(shù)學(xué)理論基礎(chǔ),學(xué)過控制理論的一天到晚都與傳遞函數(shù)打交道,其本質(zhì)就是拉普拉斯變換對系統(tǒng)的一種數(shù)學(xué)建模描述。為分析系統(tǒng)的穩(wěn)定性、可控性提供了數(shù)學(xué)工具。

什么是Z變換?

Z變換本質(zhì)上是拉普拉斯變換的離散形式。也稱為Fisher-Z變換。對于連續(xù)信號進行抽樣變換就得到了原函數(shù)的離散序列:

其中T為采樣周期,信號與系統(tǒng)中稱為沖激抽樣。其實說人話,就是將連續(xù)信號,按等間隔理想的轉(zhuǎn)為抽取離散序列樣本。看下圖就明白了,在電子系統(tǒng)中常用AD轉(zhuǎn)換器進行實現(xiàn)。

fb7aab52-57dd-11eb-8b86-12bb97331649.png

對上式進行拉普拉斯變換:

該公式利用沖激函數(shù)的抽樣特性,可簡化為:

引入,引入新的自變量Z,則上面的公式就變成這樣了:

這就是Z變換了,從上面的過程描述就知道Z變換與拉普拉斯變換的關(guān)系了。因此兩者的聯(lián)系也就是Z變換是拉布拉斯變換的離散形式。

feb4af20-57dd-11eb-8b86-12bb97331649.png

那么Z變換的意義在于什么呢?在數(shù)字信號處理以及數(shù)字控制系統(tǒng)中,Z變換提供了數(shù)學(xué)基礎(chǔ)。利用Z變換很快就能將一個傳遞函數(shù)描述成差分方程形式,這就為編程實現(xiàn)提供了數(shù)學(xué)依據(jù),比如一個數(shù)字濾波器知道其Z變換形式,寫代碼就是分分鐘的事情了,同樣知道一個控制算法的Z變換形式,同樣編代碼也是水到渠成的事情。

這里談到Z變換的離散形式,那么這里也提一句,傅立葉變換數(shù)字落地,也即離散形式是離散傅立葉變換DFT(Discrete Fourier Transform),而大家所熟知的快速傅立葉變換FFT(Fast Fourier Transform)則是DFT的高效率實現(xiàn)。

總結(jié)一下

01d9b934-57de-11eb-8b86-12bb97331649.png

要理解三種變換的聯(lián)系區(qū)別,首先要理解什么是數(shù)學(xué)變換,什么是積分變換。傅立葉變換以及拉普拉斯變換本質(zhì)上都是連續(xù)或有限個第一類間斷點函數(shù)的積分變換,而傅立葉變換是拉普拉斯變換的特殊形式,而Z變換是拉普拉斯變換的離散形式。每種變換都有其應(yīng)用價值,傅立葉變換在信號處理的頻域分析中提供了強大的數(shù)學(xué)工具,而拉普拉斯變換在電子學(xué)、控制工程、航空航天等領(lǐng)域提供了建模、分析的數(shù)學(xué)分析工具;Z變換則將這些變換進而落地為數(shù)字實現(xiàn)提供數(shù)學(xué)理論依據(jù)。DFT為FFT的離散化形式,而FFT是DFT的算法優(yōu)化實現(xiàn)。

原文標(biāo)題:傅里葉變換、拉普拉斯變換、Z變換的聯(lián)系是什么?為什么要進行這些變換?

文章出處:【微信公眾號:嵌入式ARM】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 變換器
    +關(guān)注

    關(guān)注

    17

    文章

    2106

    瀏覽量

    109426

原文標(biāo)題:傅里葉變換、拉普拉斯變換、Z變換的聯(lián)系是什么?為什么要進行這些變換?

文章出處:【微信號:gh_c472c2199c88,微信公眾號:嵌入式微處理器】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    VirtualLab Fusion案例:高NA單分子成像顯微鏡

    1.摘要 顯微術(shù)廣泛應(yīng)用于單分子成像、表面等離子體觀測、光子晶體成像等領(lǐng)域。它使直接觀察空間頻率分布成為可能。在高NA
    發(fā)表于 01-15 09:39

    傅立葉變換拉普拉斯變換的區(qū)別

    傅里葉變換拉普拉斯變換在信號處理中都是非常重要的工具,但它們之間存在一些顯著的區(qū)別。以下是對這兩種變換區(qū)別的介紹: 定義域與適用范圍 傅里葉變換
    的頭像 發(fā)表于 12-06 16:52 ?634次閱讀

    先進產(chǎn)能設(shè)備提供商拉普拉斯科創(chuàng)板上市

    近日,先進產(chǎn)能設(shè)備提供商拉普拉斯正式在科創(chuàng)板上市,股票代碼為688726,發(fā)行價格為每股17.58元。作為高端裝備及解決方案領(lǐng)域的佼佼者,拉普拉斯的上市標(biāo)志著其在光伏和半導(dǎo)體領(lǐng)域的技術(shù)實力和市場地位得到了資本市場的認可。
    的頭像 發(fā)表于 10-30 16:52 ?400次閱讀

    拉普拉斯變換的作用及意義

    拉普拉斯變換在工程數(shù)學(xué)中是一種重要的積分變換,其作用及意義主要體現(xiàn)在以下幾個方面: 作用 簡化求解過程 : 微分方程轉(zhuǎn)換為代數(shù)方程 :拉普拉斯變換
    的頭像 發(fā)表于 08-09 09:40 ?1361次閱讀

    數(shù)字信號處理三大變換關(guān)系包括什么

    數(shù)字信號處理是電子工程和信息科學(xué)領(lǐng)域的一個重要分支,它涉及到對信號進行分析、處理和轉(zhuǎn)換的方法。數(shù)字信號處理的三大變換關(guān)系是傅里葉變換、拉普拉斯變換
    的頭像 發(fā)表于 08-09 09:33 ?1283次閱讀

    半導(dǎo)體榮獲季豐電子AEC-Q100與AEC-Q006證書

    半導(dǎo)體車規(guī)級音頻功放產(chǎn)品FS5024E在季豐電子可靠性實驗室的助力下,成功通過AEC-Q100與AEC-Q006認證測試,榮獲AEC-Q100與AEC-Q006證書。
    的頭像 發(fā)表于 08-02 14:31 ?1211次閱讀

    降本增效取得新進展,拉普拉斯申請晶圓圖形化工藝專利

    來源:金融界 近日,據(jù)天眼查知識產(chǎn)權(quán)信息顯示,拉普拉斯新能源科技股份有限公司(以下簡稱“拉普拉斯”)申請一項名為“晶圓圖形化工藝”的專利,公開號CN202410574469.X。 專利摘要顯示,本
    的頭像 發(fā)表于 07-19 09:54 ?260次閱讀

    Intersolar 2024丨慕尼黑,拉普拉斯來了!

    2024年6月19日,Intersolar Europe 2024(The Smarter E)在德國慕尼黑展覽中心正式開幕。作為光伏先進產(chǎn)能核心設(shè)備商拉普拉斯攜全新一代N型電池整線解決方案亮相
    的頭像 發(fā)表于 06-20 15:37 ?332次閱讀

    拉普拉斯IPO:科技與產(chǎn)業(yè)深度融合,實現(xiàn)業(yè)務(wù)領(lǐng)域延展

    我國擁有全球最具競爭優(yōu)勢的光伏產(chǎn)業(yè)鏈,基于降本增效的需求,光伏產(chǎn)業(yè)對于技術(shù)革新具有持續(xù)的需求。拉普拉斯新能源科技股份有限公司(以下簡稱“拉普拉斯”)憑借深厚的技術(shù)積累,以及對光伏產(chǎn)業(yè)深刻的理解,聚焦
    的頭像 發(fā)表于 05-28 16:05 ?755次閱讀

    證監(jiān)會同意拉普拉斯上交所科創(chuàng)板IPO注冊

    3月27日,中國證監(jiān)會發(fā)布《關(guān)于同意拉普拉斯新能源科技股份有限公司首次公開發(fā)行股票注冊的批復(fù)》。據(jù)悉,拉普拉斯擬在上交所科創(chuàng)板上市,IPO保薦機構(gòu)為華泰聯(lián)合證券,擬募資18億元。 ? 據(jù)拉普拉斯
    的頭像 發(fā)表于 03-28 15:26 ?364次閱讀

    基于超構(gòu)表面的拉普拉斯光學(xué)微分處理器可用于光學(xué)成像

    近日,北京理工大學(xué)黃玲玲教授團隊實現(xiàn)基于超構(gòu)表面的拉普拉斯光學(xué)微分處理器,可以激發(fā)對入射角度具有選擇性的環(huán)形偶極共振
    的頭像 發(fā)表于 03-04 09:24 ?1262次閱讀
    基于超構(gòu)表面的<b class='flag-5'>拉普拉斯</b>光學(xué)微分處理器可用于光學(xué)成像

    拉普拉斯科創(chuàng)板IPO過會

    拉普拉斯新能源科技股份有限公司,簡稱“拉普拉斯”,近期成功通過IPO審核,準備在科創(chuàng)板上市。該公司計劃募資18億元,主要用于光伏高端裝備研發(fā)生產(chǎn)總部基地項目、半導(dǎo)體及光伏高端設(shè)備研發(fā)制造基地項目,以及補充流動資金。
    的頭像 發(fā)表于 02-23 14:16 ?827次閱讀

    傅里葉變換拉普拉斯變換的關(guān)系是什么

    傅里葉變換拉普拉斯變換是兩種重要的數(shù)學(xué)工具,常用于信號分析和系統(tǒng)理論領(lǐng)域。雖然它們在數(shù)學(xué)定義和應(yīng)用上有所差異,但它們之間存在緊密的聯(lián)系和相互依存的關(guān)系。 首先,我們先介紹一下傅里葉變換
    的頭像 發(fā)表于 02-18 15:45 ?1830次閱讀

    紅外光譜儀的用途 紅外光譜儀的工作原理及基本結(jié)構(gòu)

    或發(fā)射來獲得樣品的紅外光譜信息,以分析樣品的成分和結(jié)構(gòu)。光譜儀具有高分辨率、高靈敏度、寬波長范圍和量化能力強等優(yōu)勢,在科學(xué)研究、工業(yè)控制和生產(chǎn)監(jiān)測等領(lǐng)域發(fā)揮著重要作用。
    的頭像 發(fā)表于 02-01 13:43 ?2617次閱讀

    一種基于擴散模型的單像素成像高分辨率迭代重建方法

    單像素成像(FSPI)是一種基于分析理論的計算光學(xué)成像技術(shù)。
    的頭像 發(fā)表于 01-24 09:43 ?1200次閱讀
    一種基于擴散模型的<b class='flag-5'>傅</b><b class='flag-5'>里</b><b class='flag-5'>葉</b>單像素成像高分辨率迭代重建方法