0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

首次在零磁場(chǎng)下實(shí)現(xiàn)了量子反?;魻柦^緣體的陳數(shù)調(diào)控

ExMh_zhishexues ? 來(lái)源:知社學(xué)術(shù)圈 ? 作者:知社學(xué)術(shù)圈 ? 2021-01-15 09:37 ? 次閱讀

量子反?;魻栃?yīng)是一種無(wú)需外加磁場(chǎng)的量子霍爾效應(yīng),是微觀尺度下電子的量子行為在宏觀世界里精確而完美的體現(xiàn)。它不僅可以用來(lái)構(gòu)建多種新奇的拓?fù)淞孔游飸B(tài),也是量子霍爾效應(yīng)在電子學(xué)器件中實(shí)際應(yīng)用的關(guān)鍵。量子反?;魻栃?yīng)在零磁場(chǎng)下具有無(wú)耗散的手性導(dǎo)電邊緣態(tài)和精確的量子電阻,更有利于實(shí)現(xiàn)低能耗電子器件,在物質(zhì)科學(xué)、精密測(cè)量和電子器件領(lǐng)域中具有非常廣闊的應(yīng)用前景。量子反?;魻栃?yīng)由美國(guó)物理學(xué)家F. D. M. Haldane (2016年諾貝爾物理學(xué)獎(jiǎng)獲得者)于1988年從理論上預(yù)言。2013年Cui-Zu Chang 等在鉻(Cr)摻雜的拓?fù)浣^緣體薄膜中首次從實(shí)驗(yàn)上觀測(cè)到了陳數(shù)為1的量子反?;魻栃?yīng)(Science 340,167-170 (2013) )。

截止目前,量子反?;魻栃?yīng)已在磁性摻雜的拓?fù)浣^緣體(Cr 或V 摻雜的(Bi,Sb)2Te3)外延薄膜、機(jī)械剝離的本征磁性拓?fù)浣^緣體(MnBi2Te4)薄片和魔角石墨烯中實(shí)現(xiàn)。然而,這些量子霍爾絕緣體系統(tǒng)在零磁場(chǎng)下只能提供單個(gè)的無(wú)耗散導(dǎo)電邊緣態(tài),從而限制了量子反常霍爾效應(yīng)的應(yīng)用與發(fā)展。高陳數(shù)的量子反?;魻柦^緣體不僅可以減小導(dǎo)線與量子反常霍爾效應(yīng)器件之間的接觸電阻,還在拓?fù)淞孔佑?jì)算領(lǐng)域具有重要應(yīng)用價(jià)值。因此,實(shí)現(xiàn)零磁場(chǎng)下高陳數(shù)的量子反?;魻栃?yīng)及其陳數(shù)的調(diào)控,進(jìn)而達(dá)到無(wú)耗散量子通道的精準(zhǔn)控制,對(duì)于低耗散電子器件與拓?fù)淞孔佑?jì)算的發(fā)展具有重要的科學(xué)意義和應(yīng)用價(jià)值。

近日,美國(guó)賓夕法尼亞州立大學(xué)物理系的Cui-Zu Chang課題組與Chaoxing Liu課題組合作, 通過(guò)制備磁性拓?fù)浣^緣體多層結(jié)構(gòu),首次在零磁場(chǎng)下實(shí)現(xiàn)了量子反?;魻柦^緣體的陳數(shù)調(diào)控。該工作以“Tuning the Chern Number in Quantum Anomalous Hall Insulators” 為題,于2020年 12月16 日以Article形式在線發(fā)表在《Nature》期刊上。賓夕法尼亞州立大學(xué)物理系博士研究生Yi-Fan Zhao、 Ruoxi Zhang 和Ruobing Mei 為文章的共同第一作者。其他合作者還包括賓夕法尼亞州立大學(xué)物理系的Moses H. W. Chan 教授 和 Nitin Samarth 教授。

0aad9916-4430-11eb-8b86-12bb97331649.png

圖1:高陳數(shù)量子反?;魻栃?yīng)器件示意圖(用樂(lè)高積木表示,紅色為磁性摻雜拓?fù)浣^緣體,灰色為非摻雜拓?fù)浣^緣體,藍(lán)色通道為無(wú)耗散的手性導(dǎo)電邊緣態(tài))和實(shí)驗(yàn)數(shù)據(jù)

如圖1所示,研究者利用分子束外延技術(shù)(MBE)制備了高濃度磁性元素Cr摻雜的 Crx(Bi,Sb)2-xTe3/(Bi,Sb)2Te3拓?fù)浣^緣體多層結(jié)構(gòu)。高濃度摻雜的磁性拓?fù)浣^緣體Crx(Bi,Sb)2-xTe3層打破了相鄰的非摻雜拓?fù)浣^緣體(Bi,Sb)2Te3層的時(shí)間反演對(duì)稱性,使其表現(xiàn)出陳數(shù)為1的量子反?;魻栃?yīng)。同時(shí),高濃度的Cr摻雜減弱了磁性拓?fù)浣^緣體的自旋軌道耦合,使其變得拓?fù)淦接梗瑥亩指糸_(kāi)了相鄰陳數(shù)為1的量子反常霍爾絕緣體。如果相鄰量子反常霍爾絕緣體間的相互作用比較弱,通過(guò)重復(fù)疊加Crx(Bi,Sb)2-xTe3與(Bi,Sb)2Te3層, 便可以得到任意陳數(shù)的量子反常霍爾絕緣體。實(shí)驗(yàn)中,研究者通過(guò)這種方法,得到了陳數(shù)從 2到 5的量子反?;魻柦^緣體。這些高陳數(shù)量子反常霍爾絕緣體在零磁場(chǎng)下均呈現(xiàn)出高精度的量子化霍爾平臺(tái)以及接近消失的電阻。

0b1ed586-4430-11eb-8b86-12bb97331649.png

圖2:量子反?;魻柦^緣體中的陳數(shù)調(diào)控。通過(guò)(a)改變磁性摻雜的濃度或(b)中間磁性摻雜絕緣體的厚度實(shí)現(xiàn)量子反?;魻柦^緣體的陳數(shù)調(diào)控。(c)五層結(jié)構(gòu)中非平庸表面態(tài)數(shù)目的變化。一對(duì)非平庸表面態(tài)貢獻(xiàn)陳數(shù)為1.

磁性拓?fù)浣^緣體多層結(jié)構(gòu)中實(shí)現(xiàn)高陳數(shù)量子反?;魻栃?yīng)的關(guān)鍵在于高濃度的Cr摻雜減弱了磁性拓?fù)浣^緣體層的自旋軌道耦合,使其變得拓?fù)淦接梗瑥亩勾判該诫s拓?fù)浣^緣體Crx(Bi,Sb)2-xTe3與非摻雜拓?fù)浣^緣體(Bi,Sb)2Te3的界面處出現(xiàn)了新拓?fù)浔砻鎽B(tài)。即通過(guò)改變磁性元素Cr的摻雜量可以實(shí)現(xiàn)量子反?;魻柦^緣體陳數(shù)的有效調(diào)控。以五層結(jié)構(gòu)為例 (圖2c),摻雜濃度較高時(shí),器件表現(xiàn)出陳數(shù)為2的量子反?;魻栃?yīng);而當(dāng)摻雜濃度較低時(shí),器件則表現(xiàn)出陳數(shù)為1的量子反常霍爾效應(yīng)(圖2a)。

當(dāng)摻雜濃度確定時(shí),量子反?;魻柦^緣體的陳數(shù)還會(huì)受到非摻雜拓?fù)浣^緣體(Bi, Sb)2Te3 層間相互作用的影響。距離越近,相互作用越強(qiáng)。只有當(dāng)相鄰的非摻雜拓?fù)浣^緣體(Bi,Sb)2Te3層間相互作用小于一定臨界值時(shí),器件才會(huì)表現(xiàn)出高陳數(shù)量子反?;魻栃?yīng)。研究者們通過(guò)控制中間磁性摻雜拓?fù)浣^緣體Crx(Bi,Sb)2-xTe3層的厚度同樣實(shí)現(xiàn)了對(duì)量子反?;魻柦^緣體的陳數(shù)調(diào)控。實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)磁性摻雜拓?fù)浣^緣體Crx(Bi,Sb)2-xTe3層厚小于或等于1納米時(shí),器件表現(xiàn)出陳數(shù)為1的量子反?;魻栃?yīng);大于或等于2納米時(shí),器件表現(xiàn)出陳數(shù)為2的量子反?;魻栃?yīng)(圖2b)。

量子反?;魻栃?yīng)在凝聚態(tài)物理學(xué)中具有極其重要的地位。量子反?;魻柦^緣體陳數(shù)調(diào)控的實(shí)驗(yàn)實(shí)現(xiàn),豐富了量子世界已知的拓?fù)湮锵?,并為時(shí)間反演對(duì)稱性破缺下拓?fù)湎嘧冄芯亢吞綄ご判酝鉅柊虢饘賾B(tài)在內(nèi)的新拓?fù)湮飸B(tài)提供了新的平臺(tái)。同時(shí),實(shí)驗(yàn)上實(shí)現(xiàn)的對(duì)手性邊緣態(tài)數(shù)量調(diào)控,也讓基于量子反?;魻栃?yīng)的多通道量子存儲(chǔ)器件和拓?fù)淞孔佑?jì)算機(jī)的研發(fā)成為了可能。零磁場(chǎng)下量子反?;魻柦^緣體中的陳數(shù)調(diào)控,將開(kāi)啟量子反?;魻栃?yīng)研究的新篇章。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 量子
    +關(guān)注

    關(guān)注

    0

    文章

    478

    瀏覽量

    25499
  • 霍爾效應(yīng)
    +關(guān)注

    關(guān)注

    5

    文章

    462

    瀏覽量

    43139
  • 精密測(cè)量
    +關(guān)注

    關(guān)注

    0

    文章

    82

    瀏覽量

    13257

原文標(biāo)題:Nature重磅:首次在零磁場(chǎng)下實(shí)現(xiàn)量子反?;魻柦^緣體中的陳數(shù)調(diào)控

文章出處:【微信號(hào):zhishexueshuquan,微信公眾號(hào):知社學(xué)術(shù)圈】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    硅鍺材料、硅退火片和絕緣體上硅(SOI)的介紹

    本文介紹硅鍺材料、硅退火片和絕緣體上硅(SOI) 硅鍺(SiGe/Si)材料 硅鍺(SiGe/Si)材料,作為近十年來(lái)硅基材料的新發(fā)展,通過(guò)硅襯底上生長(zhǎng)硅鍺合金外延層而制得。這種材料多個(gè)領(lǐng)域
    的頭像 發(fā)表于 12-24 09:44 ?235次閱讀
    硅鍺材料、硅退火片和<b class='flag-5'>絕緣體</b>上硅(SOI)的介紹

    菱形石墨烯結(jié)構(gòu)及其中的量子反常霍爾效應(yīng)

    霍爾效應(yīng)(QAH)作為一個(gè)特別引人注目的課題,有望無(wú)耗散電子學(xué)中帶來(lái)革命性的應(yīng)用。 量子反常霍爾效應(yīng) QAH效應(yīng)是一種
    的頭像 發(fā)表于 12-06 09:52 ?105次閱讀

    導(dǎo)體和絕緣體的電阻率比較 電阻率檢測(cè)技術(shù)的發(fā)展趨勢(shì)

    導(dǎo)體和絕緣體是兩種不同的材料,它們電學(xué)性質(zhì)上有著顯著的差異。導(dǎo)體是指那些能夠容易地傳導(dǎo)電流的材料,而絕緣體則是指那些不容易傳導(dǎo)電流的材料。這些差異主要體現(xiàn)在它們的電阻率上。 導(dǎo)體和絕緣體
    的頭像 發(fā)表于 12-02 14:29 ?227次閱讀

    霍爾元件工業(yè)儀表中的應(yīng)用

    霍爾元件是一種基于霍爾效應(yīng)的磁傳感器,能夠檢測(cè)磁場(chǎng)及其變化,各類與磁場(chǎng)有關(guān)的場(chǎng)合中都有廣泛應(yīng)用。
    的頭像 發(fā)表于 11-26 12:51 ?286次閱讀

    ADS127L11磁場(chǎng)升高的時(shí)候ADC損壞,為什么?

    我們用 ADS127L11這個(gè)adc芯片連接霍爾磁場(chǎng)傳感器的模擬輸出。以前傳感器和ADC分開(kāi)有1.5米距離,沒(méi)有出現(xiàn)問(wèn)題。這次設(shè)計(jì)的時(shí)候讓ADC和磁場(chǎng)傳感器靠在一起。但是發(fā)現(xiàn)當(dāng)磁場(chǎng)
    發(fā)表于 11-18 07:50

    霍爾效應(yīng)中磁場(chǎng)怎么產(chǎn)生的

    霍爾效應(yīng)中,磁場(chǎng)的產(chǎn)生是外部提供的,而不是由霍爾效應(yīng)本身產(chǎn)生的。具體來(lái)說(shuō),磁場(chǎng)通常由外部電源提供的勵(lì)磁電流產(chǎn)生。
    的頭像 發(fā)表于 10-15 09:46 ?737次閱讀

    超導(dǎo)體的導(dǎo)電性能介于導(dǎo)體和絕緣體之間嗎

    的導(dǎo)電性能并不是介于導(dǎo)體和絕緣體之間,而是具有獨(dú)特的性質(zhì)。 首先,我們需要了解導(dǎo)體、絕緣體和半導(dǎo)體的基本概念。 導(dǎo)體:導(dǎo)體是指電阻率較小的材料,如銅、鋁等。導(dǎo)體中,電子可以自由移動(dòng),形成電流。導(dǎo)體的電阻率隨溫度的升
    的頭像 發(fā)表于 07-31 09:10 ?632次閱讀

    【《計(jì)算》閱讀體驗(yàn)】量子計(jì)算

    糾纏量子的狀態(tài)借助經(jīng)典線路傳遞過(guò)去,遠(yuǎn)端重構(gòu)該狀態(tài)的量子,這樣依然沒(méi)有超光速。目前中國(guó)的潘建偉院士的團(tuán)隊(duì)成功實(shí)現(xiàn)三元的
    發(fā)表于 07-13 22:15

    北京大學(xué)團(tuán)隊(duì)首次實(shí)現(xiàn)完全可編程拓?fù)涔庾有酒?/a>

    中國(guó)科學(xué)技術(shù)大學(xué)科研團(tuán)隊(duì)取得量子計(jì)算研究新進(jìn)展

    中國(guó)科學(xué)技術(shù)大學(xué)科研團(tuán)隊(duì)取得量子計(jì)算研究新進(jìn)展 據(jù)央視新聞報(bào)道,中國(guó)科學(xué)技術(shù)大學(xué)科研團(tuán)隊(duì)利用自主研發(fā)的關(guān)鍵設(shè)備,利用“自底而上”的量子模擬方法,在國(guó)際上首次實(shí)現(xiàn)光子的
    的頭像 發(fā)表于 05-08 16:40 ?723次閱讀

    利用碲化鉍拓?fù)?b class='flag-5'>絕緣體納米薄膜,實(shí)現(xiàn)近紅外微納結(jié)構(gòu)光學(xué)共振腔

    光學(xué)共振腔調(diào)控、光-物質(zhì)相互作用、光通信、光子集成等方面具有重要應(yīng)用。如何實(shí)現(xiàn)超薄光學(xué)共振腔一直是研究者關(guān)注的熱點(diǎn)和難點(diǎn)問(wèn)題。
    的頭像 發(fā)表于 04-22 09:49 ?543次閱讀
    利用碲化鉍拓?fù)?b class='flag-5'>絕緣體</b>納米薄膜,<b class='flag-5'>實(shí)現(xiàn)</b>近紅外微納結(jié)構(gòu)光學(xué)共振腔

    鎖相放大器OE1022應(yīng)用在黑磷中激子Mott金屬絕緣體轉(zhuǎn)變的量子臨界現(xiàn)象測(cè)量

    metal-insulator transitions in black phosphorus》文章,報(bào)道黑磷中激子Mott金屬-絕緣體轉(zhuǎn)變的光譜學(xué)和傳輸現(xiàn)象。通過(guò)光激發(fā)來(lái)不斷調(diào)控電子-空穴對(duì)的相互
    的頭像 發(fā)表于 03-28 06:29 ?434次閱讀
    鎖相放大器OE1022應(yīng)用在黑磷中激子Mott金屬<b class='flag-5'>絕緣體</b>轉(zhuǎn)變的<b class='flag-5'>量子</b>臨界現(xiàn)象測(cè)量

    量子計(jì)算機(jī)重構(gòu)未來(lái) | 閱讀體驗(yàn)】+ 了解量子疊加原理

    的位置和方向?qū)?yīng)著量子比特的狀態(tài)。量子比特狀態(tài)的操作和變化可以布洛赫球上用旋轉(zhuǎn)和移動(dòng)的方式進(jìn)行描述。通過(guò)旋轉(zhuǎn)和移動(dòng)布洛赫球上的點(diǎn),我們可以改變量子比特的狀態(tài),
    發(fā)表于 03-13 17:19

    量子計(jì)算機(jī)重構(gòu)未來(lái) | 閱讀體驗(yàn)】第二章關(guān)鍵知識(shí)點(diǎn)

    施加橫向磁場(chǎng)并隨時(shí)間逐漸減弱橫向磁場(chǎng)。 實(shí)現(xiàn)量子退火最關(guān)鍵的技術(shù)為超導(dǎo)技術(shù)(使用處于超導(dǎo)狀態(tài)的金屬家住絕緣體的約瑟夫森器件制作)。量子退火
    發(fā)表于 03-06 23:17

    多層石墨烯中的分?jǐn)?shù)量子霍爾效應(yīng)解析

    霍爾效應(yīng)在普通的導(dǎo)體中是線性的,即霍爾電阻和磁場(chǎng)強(qiáng)度成正比。但是,一些特殊的材料中,當(dāng)磁場(chǎng)很強(qiáng)時(shí),霍爾
    的頭像 發(fā)表于 02-26 09:54 ?721次閱讀