0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI雖面臨產(chǎn)業(yè)落地難的問題,但產(chǎn)業(yè)化路徑已日漸清晰

腦極體 ? 來源:腦極體 ? 作者:腦極體 ? 2021-01-06 11:32 ? 次閱讀

今天我們談?wù)?a href="http://wenjunhu.com/tags/ai/" target="_blank">AI,已經(jīng)很少再提及下圍棋、打游戲等“碾壓人類”式的炸裂新聞,而是更關(guān)注AI如何與各行業(yè)相結(jié)合,創(chuàng)造真實(shí)的產(chǎn)業(yè)價(jià)值與經(jīng)濟(jì)效率。近期,國(guó)際咨詢公司Gartner 將“AI工程化”列為2021年度九大技術(shù)趨勢(shì)之一,這也是繼去年“AI民主化”入榜后,Gartner再次對(duì)AI技術(shù)做出預(yù)判。

作為AI 民主化技術(shù)趨勢(shì)報(bào)告的主筆分析師,Gartner高級(jí)研究總監(jiān)呂俊寬認(rèn)為:這兩大趨勢(shì)的核心都是讓AI逐步走向產(chǎn)業(yè)。從案例式的單點(diǎn)項(xiàng)目,到千行萬業(yè)的規(guī)模應(yīng)用,AI走向產(chǎn)業(yè)其實(shí)包含了兩層含義:一是AI可以用規(guī)?;a(chǎn)的方式來降低產(chǎn)業(yè)使用門檻,使技術(shù)成本可接受,即“AI民主化”;二是AI可以與具體的產(chǎn)業(yè)場(chǎng)景相融合,達(dá)成可靠、可見、可信的良性收益,即“AI工程化”。但對(duì)于大部分人和企業(yè)來說,“未來所有公司都是AI公司”的愿景并不容易實(shí)現(xiàn),從“技術(shù)概念”到產(chǎn)業(yè)落地,中間還橫亙著廣袤而空曠的未知地帶。

今天,大家都希望AI會(huì)如同“水電煤”一樣推動(dòng)第四次工業(yè)革命來到我們身邊,但真正惠及所有企業(yè),讓各行業(yè)都能加上AI這個(gè)內(nèi)核,仍舊任重而道遠(yuǎn)。自2018年初,Google發(fā)布Cloud AutoML至今,AutoML成為了微軟、Facebook、AWS、BAT等巨頭爭(zhēng)相布局的重心,Gartner同時(shí)也將AutoML看做是AI產(chǎn)業(yè)化進(jìn)程中不可或缺的關(guān)鍵要素。AutoML因何成為了巨頭們的“新寵”,它又在推動(dòng)“AI民主化”和“AI工程化”中充當(dāng)了什么角色?

AI落地難成共識(shí)但產(chǎn)業(yè)化之路已日漸清晰

今天,AI為各行各業(yè)帶來了效率提升、價(jià)值增長(zhǎng),讓所有人都看到了AI的價(jià)值和潛力。伴隨著AI技術(shù)的日臻成熟,AI正在快速進(jìn)入“工業(yè)化”階段。但人才缺失、實(shí)施復(fù)雜、周期過長(zhǎng)、成果過高等客觀因素,也造成了AI難產(chǎn)的局面。想讓AI真正的釋放價(jià)值,或許可以從煤的發(fā)展歷程中看出端倪。19世紀(jì),憑借煤炭能源的挖掘,英國(guó)迅速創(chuàng)造了一個(gè)令世界瞠目結(jié)舌的工業(yè)社會(huì),一躍成為世界霸主。除了儲(chǔ)煤量大以外,其中最關(guān)鍵便是實(shí)現(xiàn)了煤產(chǎn)業(yè)化。

具體表現(xiàn)為三點(diǎn):1.提升了應(yīng)用效率:蒸汽機(jī)等高效率工具的發(fā)明與普及,讓煤這一能源得以高效、規(guī)模化的應(yīng)用。2.完善的基礎(chǔ)設(shè)施:鐵路、運(yùn)河等的建設(shè),讓煤炭能夠從礦區(qū)被運(yùn)往更具商業(yè)價(jià)值的產(chǎn)業(yè)帶。3.打造產(chǎn)業(yè)帶:人才、工具、市場(chǎng),緊密結(jié)合在技術(shù)半徑內(nèi),形成產(chǎn)業(yè)帶,讓高效生產(chǎn)成為可能。正是這些鋪陳,才讓煤得以真正成為工業(yè)革命中“動(dòng)力和文明”(艾默生語)的象征。

如今,AI正有機(jī)會(huì)像煤一樣,給人類社會(huì)帶來天翻地覆的變化,這就讓AI滿足全社會(huì)規(guī)模化應(yīng)用的能力,變得格外重要。在這一過程中,同樣少不了“蒸汽機(jī)”、“鐵軌”和產(chǎn)業(yè)帶。

AutoML讓AI價(jià)值躍點(diǎn)

在瓦特改造蒸汽機(jī)之前,英國(guó)煤礦普遍使用的是紐科門蒸汽機(jī),需要消耗大量的煤來維持運(yùn)轉(zhuǎn),也讓礦區(qū)工人們不得不在嚴(yán)酷的環(huán)境中工作。改造后,新的蒸汽能效提升了四倍之多,從而讓煤進(jìn)入了高效利用時(shí)代,也讓筋疲力盡的體力勞動(dòng)者們得到了解脫。AutoML的價(jià)值與蒸汽機(jī)一樣。在最新發(fā)布的《AI for Everyone——AutoML 引領(lǐng)AI民主化之路》白皮書中,Gartner將其視為降低門檻、提升效率的利器。

簡(jiǎn)單來說,AutoML(自動(dòng)機(jī)器學(xué)習(xí))就是可以讓企業(yè)或個(gè)人不用寫一行代碼,就訓(xùn)練出一個(gè)企業(yè)級(jí)的機(jī)器學(xué)習(xí)模型的技術(shù)。只需要按照說明,把訓(xùn)練數(shù)據(jù)都拖進(jìn)AutoML系統(tǒng)里面,很快一個(gè)適用于自身應(yīng)用的機(jī)器學(xué)習(xí)模型就訓(xùn)練好了。讓機(jī)器學(xué)習(xí)中最耗時(shí)和最難的工作——數(shù)據(jù)清洗、特征工程,變得輕松不少,甚至無需考慮了解AI復(fù)雜的原理。

對(duì)于渴望規(guī)?;⒏咝蕬?yīng)用AI的企業(yè)來說,這意味著不需要從源頭去設(shè)計(jì)一個(gè)神經(jīng)網(wǎng)絡(luò)或是進(jìn)行復(fù)雜的調(diào)參,最大程度地降低了機(jī)器學(xué)習(xí)的編程工作量,節(jié)約了AI開發(fā)時(shí)間;同時(shí)也意味著對(duì)專業(yè)數(shù)據(jù)科學(xué)家和算法工程師的依賴程度也有所降低,緩解與科技巨頭“搶人才”的困擾。在自動(dòng)駕駛、金融風(fēng)控、工業(yè)制造等多個(gè)領(lǐng)域中,使用AutoML搭建的模型效果甚至超越了大多數(shù)算法工程師。

于是,我們看到了越多越多的企業(yè)和開發(fā)者加入到了AI產(chǎn)業(yè)化的行列中,以百度為例,其EasyDL已擁有70多萬開發(fā)者,覆蓋了20多個(gè)場(chǎng)景。更為欣喜的是,我們看到了沒有一點(diǎn)AI甚至是編程背景的人將AI物盡其用:婦產(chǎn)醫(yī)院的醫(yī)生基于AI獨(dú)角獸第四范式的AutoML技術(shù)及產(chǎn)品,建立了新生兒體重預(yù)測(cè)和胎膜早破的預(yù)測(cè)模型,為產(chǎn)婦生產(chǎn)方案的制定提供更多依據(jù),這在學(xué)術(shù)界首次證明了大氣壓與胎膜早破之間的緊密相關(guān)性,填補(bǔ)了這一領(lǐng)域的空白。

這些案例意味著AI開始進(jìn)入低門檻、低成本、泛用性的工業(yè)生產(chǎn)階段,得以快速落地企業(yè),釋放技術(shù)價(jià)值。據(jù)Gartner的預(yù)測(cè),2023年,40%的開發(fā)團(tuán)隊(duì)會(huì)使用自動(dòng)化機(jī)器學(xué)習(xí)服務(wù)來構(gòu)建為其應(yīng)用軟件添加AI功能的模型,而2019年這一比例不到2%。到2025年,AI將使50%的數(shù)據(jù)科學(xué)家活動(dòng)實(shí)現(xiàn)自動(dòng)化,從而緩解人才嚴(yán)重短缺問題。這也是為什么,Gartner 認(rèn)為AutoML是引領(lǐng)AI民主化,實(shí)現(xiàn)“AI for Everyone”的關(guān)鍵力量。

鋪設(shè)鐵軌:通往產(chǎn)業(yè)智能的通衢

AutoML提升了AI的效能,但智能怎么才能夠抵達(dá)產(chǎn)業(yè)端,卻是一個(gè)大問題。因此也吸引了不少巨頭和創(chuàng)業(yè)公司爭(zhēng)相布局,它們的存在就像是鐵軌與運(yùn)河,將源源不斷的技術(shù)能量運(yùn)輸?shù)疆a(chǎn)業(yè)土壤中去。目前來看,AutoML平臺(tái)主要分為以下幾大類:

第一種,以谷歌、微軟、亞馬遜、百度等為代表的頭部AI巨頭,具有較強(qiáng)的AI實(shí)力,可以提供從算法到流程全自動(dòng)化的工具支持。

第二種,是一些開源技術(shù)平臺(tái)或組織。優(yōu)勢(shì)是靈活、開放,比如在谷歌發(fā)布AutoML之前,2013年就出現(xiàn)了可以自動(dòng)選擇模型并選擇超參數(shù)的AutoWEKA。

第三種則是一些技術(shù)/算法公司,除了AutoML工具之外,還會(huì)面向企業(yè)提供數(shù)據(jù)策略、業(yè)務(wù)咨詢等服務(wù)。

那么,它們都在向產(chǎn)業(yè)界提供哪些具體能力呢?首先是平臺(tái)和工具。比如谷歌推出的Google Cloud AutoML覆蓋了圖像分類,文本分類以及機(jī)器翻譯領(lǐng)域,比如用戶只需要上傳圖片到AutoML Vision上,就可以訓(xùn)練和部署一個(gè)計(jì)算機(jī)視覺模型。今年還展示了能夠自動(dòng)創(chuàng)建計(jì)算機(jī)視覺系統(tǒng)NASNet的能力,可以幫助自動(dòng)駕駛或智能機(jī)器人開發(fā)。

微軟差不多和谷歌同時(shí)期發(fā)布了自己的AutoML平臺(tái),涵蓋圖像、視頻、文本和語音等各個(gè)領(lǐng)域。國(guó)內(nèi)比較領(lǐng)先的如百度的EasyDL,用戶可以在上面開展圖像分類、物體檢測(cè)、圖像分割、文本分類、視頻分類、聲音分類等任務(wù)。代表廠商第四范式,打造的自動(dòng)化機(jī)器學(xué)習(xí)平臺(tái)Sage Hypercycle ML,也面向金融、零售、醫(yī)療、制造、能源等行業(yè)提供了多種封裝好的AutoML算法及全流程開發(fā)工具。

其次是服務(wù)和定制。近兩年來,AutoML領(lǐng)域也越來越注重定制化服務(wù)。比如今年1月,微軟就針對(duì)視覺能力打造了自動(dòng)化平臺(tái)Microsoft Custom Vision Services(微軟定制視覺服務(wù))。谷歌也與產(chǎn)業(yè)端合作,利用谷歌云的AutoML Vision技術(shù)創(chuàng)建了能理解古埃及文字的工具Fabricius,來達(dá)到普及AI的效果。國(guó)內(nèi)如第四范式也提出了“AutoML全棧算法”從感知、認(rèn)知、決策三個(gè)關(guān)鍵維度幫助企業(yè)提升關(guān)鍵場(chǎng)景的決策水平,同時(shí)針對(duì)不同行業(yè)、不同技術(shù)能力的企業(yè)來有的放矢地提供服務(wù)。

如果說AutoML平臺(tái)和工具降低了AI的應(yīng)用門檻,加速了“AI民主化”的進(jìn)程,那么服務(wù)導(dǎo)向的出現(xiàn),則讓人們看到“AI工程化”趨勢(shì)的端倪。這一變化背后的原因也很簡(jiǎn)單,回到第一次工業(yè)革命時(shí)期,我們會(huì)發(fā)現(xiàn)基礎(chǔ)設(shè)施的鋪設(shè)往往需要因地制宜,以龐大的工程將運(yùn)河與鐵軌不斷延伸到東海岸。AI落地產(chǎn)業(yè)自然也不是一種平臺(tái)或工具集就能夠完成的。一方面,許多巨頭云廠商在推出AutoML平臺(tái)的同時(shí),也希望企業(yè)用戶與自己的開發(fā)生態(tài)相捆綁,比如谷歌就要求必須在谷歌云上部署相關(guān)模型和網(wǎng)絡(luò),這對(duì)于無法或無意使用谷歌云的用戶來說就成了限制。

同時(shí),應(yīng)用AI更是一個(gè)千變?nèi)f化的復(fù)雜工程。要讓毫無機(jī)器學(xué)習(xí)經(jīng)驗(yàn)的個(gè)人和企業(yè)借助AutoML用上AI,需要與產(chǎn)業(yè)應(yīng)用場(chǎng)景的深度適配,同時(shí)解決數(shù)據(jù)收集、數(shù)據(jù)清理、打通數(shù)據(jù)孤島等等障礙,才能讓AI在業(yè)務(wù)端跑起來。這些都需要懂業(yè)務(wù)的行業(yè)人士和算法人員來共同探討、磨合,去建立符合產(chǎn)業(yè)需求的技術(shù)管道。只有一個(gè)充分考慮不同產(chǎn)業(yè)地帶客觀環(huán)境與具體訴求的“交通網(wǎng)絡(luò)”,才能驅(qū)動(dòng)AI正在走到產(chǎn)業(yè)那邊去。

靠近價(jià)值:AutoML產(chǎn)業(yè)帶的興起

對(duì)于企業(yè)來說,應(yīng)該如何考量和適時(shí)使用AutoML來提升“AI產(chǎn)能”呢?從企業(yè)視角出發(fā),我們認(rèn)為有三個(gè)關(guān)鍵要素是需要注意的:

1.是否具有AutoML落地的配套服務(wù)能力。每個(gè)廠商期待的自動(dòng)化、智能化是不一樣的,企業(yè)在選擇AutoML平臺(tái)時(shí)需要考察其服務(wù)能力與背景。

呂俊寬認(rèn)為,對(duì)于企業(yè)來說,如何幫助自己提高業(yè)務(wù)價(jià)值是關(guān)鍵,但不是每家企業(yè)都能像互聯(lián)網(wǎng)巨頭一樣能夠讓AI與業(yè)務(wù)深度耦合,所以需要AI廠商有強(qiáng)大的服務(wù)能力支撐企業(yè)客戶兌現(xiàn)AI的價(jià)值。對(duì)于AI企業(yè)來說,想要服務(wù)好企業(yè),對(duì)產(chǎn)業(yè)服務(wù)的重視會(huì)直接決定其技術(shù)上的投入程度,對(duì)產(chǎn)業(yè)迫切需要的能力亦需要快速迭代;同時(shí)應(yīng)當(dāng)深入了解客戶的業(yè)務(wù)場(chǎng)景,幫助其提升關(guān)鍵的業(yè)務(wù)指標(biāo)和表現(xiàn)。有的業(yè)務(wù)適合上云、有的適合產(chǎn)品化服務(wù),AI規(guī)?;瘧?yīng)用后如何解決計(jì)算成本上升問題,是否需要自建AI系統(tǒng)等等,這些需要在不同選項(xiàng)里找到平衡點(diǎn)。

Gartner的AutoML白皮書也指出,頂尖的AutoML算法相當(dāng)于AI應(yīng)用構(gòu)建的“引擎”。而AI應(yīng)用的開發(fā)是一項(xiàng)非常復(fù)雜的精細(xì)化工程,涉及諸多環(huán)節(jié)。假如沒有一套完整的AI開發(fā)工具,各個(gè)環(huán)節(jié)就會(huì)變成彼此割裂、互不兼容的“孤島”,不僅導(dǎo)致科學(xué)家在開發(fā)過程中疲于奔命,也會(huì)讓AI規(guī)模化變成“泡影”。只有打造基于AutoML算法“引擎”的“自動(dòng)化工廠”,實(shí)現(xiàn)全面產(chǎn)品化,才能真正推動(dòng)AI產(chǎn)業(yè)化落地。

擅長(zhǎng)于個(gè)人C端市場(chǎng)的谷歌在AutoML上的投入程度和研發(fā)頻率相對(duì)于其他子業(yè)務(wù)(如DeepMind)就要少的多,更重視極客和工程師思維;國(guó)內(nèi)如百度在推廣EasyDL時(shí),也十分重視對(duì)開發(fā)者和企業(yè)的幫助,和服務(wù)體系的打造,支持初中生、中年個(gè)體戶、電網(wǎng)企業(yè)等零門檻用上AI;第四范式的策略則更加細(xì)致,根據(jù)不同技術(shù)成熟度的企業(yè),提供不同應(yīng)用的AI產(chǎn)品和方法論,讓AI產(chǎn)品得以更好使用和落地。例如,面對(duì)想要快速驗(yàn)證AI效果、快速落地的客戶,可以選擇Sage HyperCycle ML,某金融企業(yè)就用這種方式讓毫無AI模型構(gòu)建經(jīng)驗(yàn)的金融企業(yè)在幾小時(shí)內(nèi)完成建模工作;而面對(duì)體量大、場(chǎng)景多的客戶,第四范式也可通過先知等平臺(tái)化產(chǎn)品,讓客戶自主、規(guī)模化、低門檻落地AI應(yīng)用,同時(shí),也嵌入了相應(yīng)的AI服務(wù)支撐體系。

2.如何以較低的成本得到較好的效果。如果說“AI民主化”是讓更多人了解和感受到AI和AutoML能做什么,那么“AI工程化”則要求AI規(guī)模化落地的同時(shí),還能夠帶來更系統(tǒng)性的業(yè)務(wù)價(jià)值。第四范式副總裁、主任科學(xué)家涂威威告訴我們,企業(yè)在使用AutoML時(shí)有三個(gè)考量點(diǎn):業(yè)務(wù)收益和效果、成本支出、解決問題的范圍,只有這三點(diǎn)都滿足企業(yè)端的要求,才能讓AutoML切實(shí)有效地幫助AI加速規(guī)模化應(yīng)用進(jìn)程。比如算法上需要提升效果,給業(yè)務(wù)帶來實(shí)際增長(zhǎng)點(diǎn),讓模型面對(duì)各種真實(shí)復(fù)雜情況都能快速識(shí)別,而非只是停留在實(shí)驗(yàn)室階段;

許多企業(yè)也會(huì)面臨一個(gè)問題,就是在線下效果好,而部署到真實(shí)環(huán)境中,效果大打折扣。這就需要注重線上線下數(shù)據(jù)一致性的問題,并做出相應(yīng)的優(yōu)化;成本方面,AI如何跟現(xiàn)有業(yè)務(wù)結(jié)合、如何部署到環(huán)境中去,計(jì)算資源怎么解決,都是需要去考慮的。AutoML在幫助AI規(guī)?;涞氐耐瑫r(shí),也帶來了巨大的算力消耗,如果采用業(yè)界常用的GPU甚至是TPU,絕大多數(shù)的企業(yè)都是負(fù)擔(dān)不起的。因此,為了讓AI更好的規(guī)?;?,還需要軟硬件協(xié)同優(yōu)化,讓部署AI的成本變成“可負(fù)擔(dān)”。

3.是否具有擴(kuò)展性。我們知道,技術(shù)產(chǎn)品和架構(gòu)總是會(huì)不斷迭代更新的,如果需要全盤推倒重來,無疑會(huì)給企業(yè)帶來沒有必要的損失,這也讓很多企業(yè)對(duì)AutoML等新型生產(chǎn)力工具望而卻步。這就需要AutoML平臺(tái)和廠商在一開始就考慮到技術(shù)的擴(kuò)展性并進(jìn)行應(yīng)對(duì)。

比如百度EasyDL就借助百度大腦的全棧AI能力實(shí)現(xiàn)底層技術(shù)的全面部署與融合;第四范式通過技術(shù)解決模型的自學(xué)習(xí)問題,讓動(dòng)態(tài)模型可以根據(jù)業(yè)務(wù)變化而進(jìn)化,進(jìn)行自動(dòng)化迭代。同時(shí),第四范式還將AutoML相關(guān)架構(gòu)、技術(shù)抽象成了操作系統(tǒng),這就從底層核心將技術(shù)框架穩(wěn)定下來,讓各項(xiàng)數(shù)據(jù)和應(yīng)用可以被標(biāo)準(zhǔn)化管理,后續(xù)運(yùn)維也可以通過系統(tǒng)層來應(yīng)對(duì)變化,從而讓企業(yè)可以建立更長(zhǎng)期的AI戰(zhàn)略,不會(huì)因?yàn)榧夹g(shù)變化而讓業(yè)務(wù)受到波動(dòng)。當(dāng)企業(yè)、技術(shù)、平臺(tái)等等都匯聚在一起,形成了完整的AutoML產(chǎn)業(yè)帶,生態(tài)也就開始真正建立起來,最終拉開一個(gè)恢弘的產(chǎn)業(yè)智能時(shí)代大幕。

從這一刻,寫下未來

如果說是煤工業(yè)的崛起,帶領(lǐng)人類穿越了漫長(zhǎng)的工業(yè)童年時(shí)代,開始了一個(gè)史無前例的時(shí)代,那么隨著國(guó)家戰(zhàn)略的推動(dòng)和產(chǎn)業(yè)需求的全面爆發(fā),AutoML帶來的產(chǎn)業(yè)智能紅利是否會(huì)像煤炭一樣,引發(fā)一場(chǎng)新的產(chǎn)業(yè)革命?AI的產(chǎn)業(yè)大考暴露了人才短缺、成本高昂等問題,又推動(dòng)了AutoML這樣解決方法的產(chǎn)生,由此帶來的AI民主化和工程化浪潮,正在將全社會(huì)帶入智能變革的疆域。其中最值得注目的,是中國(guó)企業(yè)表現(xiàn)出了對(duì)科技前所未有的饑餓感,依靠技術(shù)來找尋業(yè)務(wù)增長(zhǎng)點(diǎn),急切地尋找技術(shù)場(chǎng)景和落地,這些積極的做法都讓AI的紅利更早、更快地生長(zhǎng)在這片土地上。

fqj

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    30947

    瀏覽量

    269213
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8420

    瀏覽量

    132685
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    芯馳科技出席SAECCE 2024汽車芯片關(guān)鍵技術(shù)及產(chǎn)業(yè)化應(yīng)用論壇

    近日,第三十一屆中國(guó)汽車工程學(xué)會(huì)年會(huì)暨展覽會(huì)(SAECCE 2024)在重慶召開,芯馳科技資深產(chǎn)品市場(chǎng)總監(jiān)金輝受邀出席“汽車芯片關(guān)鍵技術(shù)及產(chǎn)業(yè)化應(yīng)用”論壇,并發(fā)表了《場(chǎng)景驅(qū)動(dòng),助力汽車智能高效落地》的主題演講,與國(guó)內(nèi)外汽車企業(yè)
    的頭像 發(fā)表于 11-18 09:57 ?296次閱讀

    紫光同芯亮相SAECCE 2024汽車芯片關(guān)鍵技術(shù)及產(chǎn)業(yè)化應(yīng)用論壇

    近日,SAECCE 2024汽車芯片關(guān)鍵技術(shù)及產(chǎn)業(yè)化應(yīng)用論壇順利舉行。本次活動(dòng)主要從汽車芯片關(guān)鍵技術(shù)、核心制造工藝、檢測(cè)認(rèn)證體系建設(shè)及產(chǎn)業(yè)化應(yīng)用等方面討論我國(guó)當(dāng)前汽車芯片技術(shù)發(fā)展及產(chǎn)業(yè)生態(tài)建設(shè)需要
    的頭像 發(fā)表于 11-17 09:28 ?395次閱讀

    商湯科技大模型產(chǎn)業(yè)化路徑的實(shí)踐經(jīng)驗(yàn)

    AI 2.0時(shí)代,垂直領(lǐng)域的數(shù)據(jù)會(huì)成為重要的生產(chǎn)資料,并帶來新的生產(chǎn)力突破。” 商湯科技董事長(zhǎng)兼CEO徐立在“人工智能與數(shù)據(jù)要素產(chǎn)業(yè)生態(tài)大會(huì)”上說。
    的頭像 發(fā)表于 09-26 10:11 ?422次閱讀

    固態(tài)電池產(chǎn)業(yè)化加速,企業(yè)積極布局市場(chǎng)

    在電動(dòng)的浪潮席卷全球之際,兩大核心驅(qū)動(dòng)力——技術(shù)的持續(xù)革新與應(yīng)用領(lǐng)域的廣泛拓展,正引領(lǐng)著固態(tài)電池產(chǎn)業(yè)加速邁向產(chǎn)業(yè)化。固態(tài)電池企業(yè)在這一進(jìn)程中,不僅要深耕技術(shù)路徑的優(yōu)化,還需精準(zhǔn)錨定契
    的頭像 發(fā)表于 09-20 15:15 ?514次閱讀

    北京銘鎵半導(dǎo)體引領(lǐng)氧化鎵材料創(chuàng)新,實(shí)現(xiàn)產(chǎn)業(yè)化新突破

    北京順義園內(nèi)的北京銘鎵半導(dǎo)體有限公司在超寬禁帶半導(dǎo)體氧化鎵材料的開發(fā)及應(yīng)用產(chǎn)業(yè)化方面取得了顯著進(jìn)展,其技術(shù)已領(lǐng)先國(guó)際同類產(chǎn)品標(biāo)準(zhǔn)。
    的頭像 發(fā)表于 06-05 10:49 ?930次閱讀

    半導(dǎo)體激光雷達(dá)及傳感器件產(chǎn)業(yè)化項(xiàng)目落地德州

    5月31日下午,德州天衢新區(qū)管委會(huì)與廣東先導(dǎo)稀材股份有限公司簽訂總投資50億元的半導(dǎo)體激光雷達(dá)及傳感器件產(chǎn)業(yè)化項(xiàng)目投資協(xié)議,標(biāo)志著繼有研、立訊之后,德州新一代信息技術(shù)產(chǎn)業(yè)進(jìn)入新的發(fā)展階段。 ? 根據(jù)
    的頭像 發(fā)表于 06-04 09:48 ?1.8w次閱讀

    IC咖啡沙龍“芯未來”公益講座丨仇健樂:RISC-V指令架構(gòu)賦能端側(cè)智能芯片產(chǎn)業(yè)化落地

    4月18日,由張江高科、IC咖啡聯(lián)合主辦的“芯未來”公益講座【2024第十場(chǎng)】“RISC-V指令架構(gòu)賦能端側(cè)智能芯片產(chǎn)業(yè)化落地”如約開講。本次講座榮幸邀請(qǐng)到時(shí)擎科技研發(fā)副總裁仇健樂先生與產(chǎn)業(yè)人士一起
    的頭像 發(fā)表于 04-24 08:16 ?339次閱讀
    IC咖啡沙龍“芯未來”公益講座丨仇健樂:RISC-V指令架構(gòu)賦能端側(cè)智能芯片<b class='flag-5'>產(chǎn)業(yè)化</b><b class='flag-5'>落地</b>

    2023年中國(guó)專利調(diào)查報(bào)告:發(fā)明專利產(chǎn)業(yè)化率顯著提升,創(chuàng)新環(huán)境持續(xù)優(yōu)化

    我國(guó)專利產(chǎn)業(yè)化進(jìn)程明顯加快。2023年,我國(guó)發(fā)明專利產(chǎn)業(yè)化率升至39.6%,同比提高2.9個(gè)百分點(diǎn),連續(xù)五年穩(wěn)步上升;實(shí)用新型專利產(chǎn)業(yè)化率達(dá)到57.1%,同比提高12.2個(gè)百分點(diǎn);外
    的頭像 發(fā)表于 04-17 16:23 ?799次閱讀

    深開鴻王皓:推進(jìn)開鴻產(chǎn)業(yè)化產(chǎn)業(yè)開鴻,構(gòu)建開源鴻蒙新生態(tài)

    、研發(fā)體系總裁王皓博士受邀出席活動(dòng),發(fā)表了《開鴻安全數(shù)字底座,構(gòu)建開源鴻蒙新生態(tài)》的主題演講,圍繞開鴻安全數(shù)字底座與AI融合、開鴻產(chǎn)業(yè)化產(chǎn)業(yè)開鴻、
    的頭像 發(fā)表于 04-12 10:57 ?907次閱讀
    深開鴻王皓:推進(jìn)開鴻<b class='flag-5'>產(chǎn)業(yè)化</b>與<b class='flag-5'>產(chǎn)業(yè)</b>開鴻<b class='flag-5'>化</b>,構(gòu)建開源鴻蒙新生態(tài)

    量產(chǎn)進(jìn)行時(shí),鈉離子電池產(chǎn)業(yè)化“曙光”初現(xiàn)

    作為動(dòng)儲(chǔ)電池產(chǎn)業(yè)變革的重要方向之一,鈉離子電池產(chǎn)業(yè)化進(jìn)程正處于亟待尋求突破的瓶頸期。
    的頭像 發(fā)表于 03-17 09:47 ?1215次閱讀
    量產(chǎn)進(jìn)行時(shí),鈉離子電池<b class='flag-5'>產(chǎn)業(yè)化</b>“曙光”初現(xiàn)

    半固態(tài)電池產(chǎn)業(yè)化正在從乘用車邁向商用車

    半固態(tài)電池產(chǎn)業(yè)化正在從乘用車邁向商用車。
    的頭像 發(fā)表于 03-05 09:39 ?818次閱讀

    長(zhǎng)飛光學(xué)與半導(dǎo)體石英元器件研發(fā)及產(chǎn)業(yè)化項(xiàng)目封頂

    據(jù)中國(guó)光谷官微消息,1月26日,長(zhǎng)飛光學(xué)與半導(dǎo)體石英元器件研發(fā)及產(chǎn)業(yè)化項(xiàng)目封頂,開啟高端石英材料產(chǎn)業(yè)化新征程。 據(jù)悉,去年4月,東湖高新區(qū)與長(zhǎng)飛石英簽署投資合作協(xié)議,建設(shè)光學(xué)級(jí)半導(dǎo)體石英元器件研發(fā)
    的頭像 發(fā)表于 02-01 14:58 ?805次閱讀
    長(zhǎng)飛光學(xué)與半導(dǎo)體石英元器件研發(fā)及<b class='flag-5'>產(chǎn)業(yè)化</b>項(xiàng)目封頂

    巨輪智能RV減速器進(jìn)入產(chǎn)業(yè)化階段

    1月23日下午,巨輪智能在深交所互動(dòng)平臺(tái)網(wǎng)友提問,證實(shí)了公司RV減速器進(jìn)入產(chǎn)業(yè)化階段。
    的頭像 發(fā)表于 01-25 10:03 ?832次閱讀
    巨輪智能RV減速器<b class='flag-5'>已</b>進(jìn)入<b class='flag-5'>產(chǎn)業(yè)化</b>階段

    全固態(tài)電池產(chǎn)業(yè)化需以市占率突破1%為標(biāo)志

    全固態(tài)電池的研發(fā)是為了“防止被顛覆”,其產(chǎn)業(yè)化需以市占率突破1%為標(biāo)志。
    的頭像 發(fā)表于 01-24 10:13 ?1455次閱讀