0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

相控陣天線方向圖——錐削對(duì)整個(gè)陣列的影響

電子設(shè)計(jì) ? 來源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2020-12-24 18:37 ? 次閱讀

簡介

在第一部分中,我們介紹了相控陣概念、波束轉(zhuǎn)向和陣列增益。在第二部分中,我們討論了柵瓣和波束斜視概念。在這第三部分中,我們首先討論天線旁瓣,以及錐削對(duì)整個(gè)陣列的影響。錐削就是操控單個(gè)元件的振幅對(duì)整體天線響應(yīng)的影響。

在第一部分中未應(yīng)用錐削,且從圖中可以看出第一旁瓣為–13 dBc。錐削提供了一種減少天線旁瓣的方法,但會(huì)降低天線增益和主瓣波束寬度。在簡要介紹錐削之后,我們會(huì)詳細(xì)說明與天線增益相關(guān)的幾個(gè)要點(diǎn)。

傅里葉變換:矩形函數(shù) ? sinc函數(shù)

電氣工程中,有各種不同的方法可以將一個(gè)域中的矩形函數(shù)轉(zhuǎn)變?yōu)榱硪粋€(gè)域中的sinc函數(shù)。最常見的形式是時(shí)域中的矩形脈沖轉(zhuǎn)換成sinc函數(shù)的頻譜分量。這個(gè)轉(zhuǎn)換過程是可逆的,在寬帶應(yīng)用中,寬帶波形也可以轉(zhuǎn)換為時(shí)域中的窄脈沖。相控陣天線也具有類似的特性:沿陣列平面軸的矩形加權(quán)按照正弦函數(shù)輻射方向圖。

應(yīng)用到此特性,以sinc函數(shù)表示的第一旁瓣只有-13dBc是有問題的。圖1顯示了這個(gè)原理。

圖1.時(shí)域中的矩形脈沖在頻域中產(chǎn)生正弦函數(shù),第一旁瓣僅為–13 dBc。

錐削(或加權(quán))

要解決旁瓣問題,可以在整個(gè)矩形脈沖內(nèi)使用加權(quán)處理。這在FFT中很常見,相控陣中的錐削選項(xiàng)則是直接模擬了FFT中加權(quán)。遺憾的是,加權(quán)也是存在缺點(diǎn)的,它雖然實(shí)現(xiàn)了減少旁瓣但需要以加寬主瓣為代價(jià)。圖2顯示了一些加權(quán)函數(shù)示例。

圖2.加權(quán)函數(shù)示例。

波形與天線類比

從時(shí)間到頻率的轉(zhuǎn)換是很平常的,大多數(shù)電氣工程師自然會(huì)明白。但是,對(duì)于剛接觸相控陣的工程師來說,如何使用天線方向圖類比在一開始并不明確。為此,我們用場域激勵(lì)代替時(shí)域信號(hào),并用空間域代替頻域輸出。

時(shí)域 → 場域

v(t)—電壓是時(shí)間的函數(shù)

E(x)—場強(qiáng)與孔徑中的位置呈函數(shù)關(guān)系

頻域 → 空間域

Y(f)—功率譜密度是頻率的函數(shù)

G(q)—天線增益是角度的函數(shù)

圖3顯示了這些原理。在這里,我們比較了陣列中應(yīng)用兩種不同加權(quán)的輻射能量。圖3a和圖3c顯示場域。每個(gè)點(diǎn)表示這個(gè)N = 16陣列中一個(gè)元件的振幅。在天線之外,沒有輻射能量,輻射從天線邊緣開始。在圖3a中,場強(qiáng)出現(xiàn)突變,而在圖3c中,場強(qiáng)隨著距離天線邊緣的距離增大而逐漸增大。對(duì)輻射能量造成的影響分別如圖3b和圖3d所示。

圖3.顯示變窄元件轉(zhuǎn)化為輻射能量加權(quán)的圖表;

(A)對(duì)所有元件使用統(tǒng)一加權(quán);(b)正弦函數(shù)在空間內(nèi)輻射;(c)對(duì)所有元件使用海明窗加權(quán)處理;以及(d)以加寬主波束為代價(jià),將輻射旁瓣降低到40 dBc。

在下一節(jié)中,我們將介紹影響天線方向圖性能的兩種附加誤差項(xiàng)。第一種是互耦。在本文中,我們只是提出存在此問題,并且給出用于量化此影響的EM模型的數(shù)量。第二種是由于在相移控制中精度有限而產(chǎn)生的量化旁瓣。我們對(duì)量化誤差進(jìn)行了更深入地處理,并對(duì)量化旁瓣進(jìn)行了量化。

互耦誤差

這里討論的所有方程和陣列因子圖都假設(shè)元件是相同的,并且每個(gè)元件都具有相同的輻射方向圖。但事實(shí)并非如此。其中一個(gè)原因是互耦,即相鄰元件之間耦合。元件分散在陣列中與元件彼此緊密排列相比,其輻射性能會(huì)發(fā)生很大變化。位于陣列邊緣的元件和位于陣列中心的元件所處的環(huán)境不同。此外,當(dāng)波束轉(zhuǎn)向時(shí),元件之間的互耦也會(huì)改變。所有這些影響會(huì)產(chǎn)生一個(gè)附加的誤差項(xiàng),需要天線設(shè)計(jì)人員加以考慮,在實(shí)際設(shè)計(jì)中,需要花大量精力使用電磁仿真器來表征這些條件下的輻射影響。

波束角度分辨率和量化旁瓣

相控陣天線還有另一個(gè)缺陷,用于波束轉(zhuǎn)向的時(shí)間延遲單元或移相器的分辨率是有限的。這通常利用離散時(shí)間(或相位)步長來實(shí)現(xiàn)數(shù)字控制。但是,如何確定延遲單元或移向器的分辨率或位數(shù),以達(dá)到的所需的波束質(zhì)量呢?

與常見的理解相反,波束角度分辨率并不等于移相器的分辨率。從方程式1(第二部分中的方程式2)中,我們可以看出這樣的關(guān)系:

我們可以用整個(gè)陣列中的相移來表達(dá)這種關(guān)系,需要將陣列寬度D替換為元件間隔d。然后如果我們將移相器ΦLSB 替換為?Φ,我們可以粗略估算波束角度分辨率。對(duì)于N個(gè)元件以半個(gè)波長間隔排列的線性陣列來說,波束角度分辨率如方程式2所示。

這是背離瞄準(zhǔn)線的波束角度分辨率,描述了當(dāng)陣列的一半相移為零,另一半的相移為移相器的LSB時(shí)的波束角度。如果不到一半的陣列通過編程達(dá)到相位LSB,則角度可能更小。圖4顯示使用2位移相器的30元件陣列的波束角度(相位LSB逐漸增加)。注意,波束角度增加,直到一半元件移相LSB,然后在所有元件移相LSB時(shí)歸零。當(dāng)波束角度通過陣列中的相位差而變化時(shí),這是有意義的。注意,正如前面計(jì)算的那樣,此特性的峰值為θRES。

圖4.30元件線性陣列在LSB時(shí)的波束角度與元件數(shù)量之間的關(guān)系。

圖5.移相器分辨率為2位至8位時(shí),波束角度分辨率與陣列大小的關(guān)系。

圖5顯示不同移相器分辨率下θRES與陣列直徑(元件間隔為λ/2)的關(guān)系。這表明,即使是LSB為90°的非常粗糙的2位移相器,也可以在直徑為30個(gè)元件的陣列中實(shí)現(xiàn)1°的分辨率。在第一部分使用方程式10針對(duì)30元件、λ/2間隔條件進(jìn)行求解時(shí),主瓣波束寬度約為3.3°,表示即便使用這個(gè)非常粗糙的移相器,我們也具備足夠的分辨率。那么,使用更高分辨率的移相器又會(huì)得出什么結(jié)果?從時(shí)間采樣系統(tǒng)(數(shù)據(jù)轉(zhuǎn)換器)和空間采樣系統(tǒng)(相控陣天線)之間的類比可以看出,較高分辨率的數(shù)據(jù)轉(zhuǎn)換器產(chǎn)生較低的量化本底噪聲。更高分辨率的相位/時(shí)間偏移器會(huì)導(dǎo)致較低的量化旁瓣電平(QSLL)。

圖6顯示之前描述的編程采用θRES波束分辨率角度的2位30元件線性陣列的移相器設(shè)置和相位誤差。一半陣列設(shè)為零相移,另一半設(shè)為90°LSB。注意,誤差(理想量化相移與實(shí)際量化相移之間的差異)曲線呈鋸齒狀。

圖6.陣列中的元件相移和相位誤差。

圖7顯示同一天線在轉(zhuǎn)向0°和轉(zhuǎn)向波束分辨率角度時(shí)的天線方向圖。請(qǐng)注意,由于移相器的量化誤差,出現(xiàn)了嚴(yán)重的方向圖退化。

圖7.在最小波束角度下具有量化旁瓣的天線方向圖。

當(dāng)孔徑內(nèi)發(fā)生最大量化誤差,其他所有元件都是零誤差,且相鄰元件間隔LSB/2時(shí),出現(xiàn)最糟糕的量化旁瓣情形。這代表了最大可能的量化誤差和孔徑誤差的最大周期。圖8顯示了使用2位30元件時(shí)的這種情況。

圖8.最糟糕的天線量化旁瓣情形——2位。

這種情況在可預(yù)測的波束角度下(如方程3所示)發(fā)生。

其中 n < 2BITS,且n為奇數(shù)。對(duì)于2位系統(tǒng),這種情況會(huì)在±14.5°和±48.6°范圍之間發(fā)生4次。圖9顯示該系統(tǒng)在n = 1,q = +14.5°時(shí)的天線方向圖。注意在–50°時(shí)具有明顯的–7.5 dB量化旁瓣。

圖9.最糟糕的天線量化旁瓣情形:2位,n = 1,30元件。

除了量化誤差依次為0和LSB/2的特殊情況外,在其他波束角度下,rms誤差隨著波束在孔徑上的擴(kuò)散而減小。事實(shí)上,對(duì)于n為偶數(shù)值的角度方程(方程式3),量化誤差為0。如果我們繪制在不同移相器分辨率下最高量化旁瓣的相對(duì)電平,會(huì)出現(xiàn)一些有趣的方向圖。圖9顯示100元件線性陣列最糟糕的QSLL,該陣列使用海明錐形,以便將量化旁瓣與本節(jié)前面討論的經(jīng)典開窗旁瓣區(qū)分開來。

注意,在30°時(shí),所有量化誤差都趨于0,這可以顯示為sin(30°) = 0.5時(shí)的結(jié)果。請(qǐng)注意,對(duì)于任何特定的n位移相器,在最糟糕電平下的波束角度在更高分辨率n下會(huì)顯示零量化誤差。在這里可以看出描述的最糟糕旁瓣電平下的波束角度,以及QSLL在每位分辨率下改善了6 dB。

圖10.在2位至6位移相器分辨率下,最糟糕的量化旁瓣與波束角度的關(guān)系。

圖11.最糟糕的量化旁瓣電平與移相器分辨率的關(guān)系。

2位至8位移相器分辨率的最大量化旁瓣電平QSLL如圖11所示,它遵循類似的數(shù)據(jù)轉(zhuǎn)換器量化噪聲規(guī)律,

或每位分辨率約6 dB。在2位時(shí),QSLL電平約為-7.5 dB,高于數(shù)據(jù)轉(zhuǎn)換器進(jìn)行隨機(jī)信號(hào)采樣時(shí)經(jīng)典的+12 dB。這種差異可以視為在孔徑采樣時(shí)周期性出現(xiàn)的鋸齒誤差導(dǎo)致的結(jié)果,其中空間諧波會(huì)增加相位。注意QSLL與孔徑大小不呈函數(shù)關(guān)系。

總結(jié)

我們現(xiàn)在可以總結(jié)出天線工程師面臨的與波束寬度和旁瓣相關(guān)的一些挑戰(zhàn):

角度分辨率需要窄波束。窄波束需要大孔徑,這又需要許多元件。此外,波束在背離瞄準(zhǔn)線時(shí)會(huì)變寬,所以需要額外的元件,以在掃描角度增大時(shí)保持波束寬度不變。

似乎可以通過增大元件間隔來擴(kuò)大整個(gè)天線區(qū)域,而無需額外增加元件。此舉可以讓波束變窄,但是,很遺憾,如果元件分布不均,會(huì)導(dǎo)致產(chǎn)生柵瓣??蓢L試通過減小掃描角度,同時(shí)采用有意隨機(jī)顯示元件方向圖的非周期陣列,來利用增加的天線區(qū)域,同時(shí)最大限度減少柵瓣問題。

旁瓣是另一個(gè)問題,我們已知可以通過將陣列增益朝向邊緣逐漸減小來解決。但是,這種錐削以波束變寬為代價(jià),又會(huì)需要更多元件。移相器分辨率會(huì)導(dǎo)致出現(xiàn)量化旁瓣,在設(shè)計(jì)天線時(shí)也必須加以考慮。對(duì)于采用移相器的天線,波束斜視現(xiàn)象會(huì)導(dǎo)致角位移與頻率相互影響,從而限制高角度分辨率下可用的帶寬。

以上就是有關(guān)相控陣天線方向圖全部三個(gè)部分的內(nèi)容。在第一部分中,我們介紹波束指向、陣列因子和天線增益。在第二部分中,我們討論柵瓣和波束斜視的缺點(diǎn)。在第三部分中,我們討論錐削和量化誤差。本文不是針對(duì)精通電磁和輻射元件設(shè)計(jì)的天線設(shè)計(jì)工程師,而是針對(duì)在相控陣領(lǐng)域工作的大量相鄰學(xué)科的工程師,這些直觀的解釋,將有助于他們理解影響整個(gè)天線方向圖的性能的各種因素。

審核編輯:符乾江
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 現(xiàn)場總線
    +關(guān)注

    關(guān)注

    3

    文章

    519

    瀏覽量

    38573
  • 相控陣天線
    +關(guān)注

    關(guān)注

    0

    文章

    44

    瀏覽量

    9025
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    FRED應(yīng)用:透鏡的設(shè)計(jì)

    簡介 透鏡,通常也被稱作軸對(duì)稱棱鏡,是一種擁有一個(gè)圓錐面和一個(gè)平面的透鏡。透鏡常用來產(chǎn)生強(qiáng)度分布為貝塞爾函數(shù)型的光束或者一個(gè)圓錐形的非發(fā)散光束??梢杂糜诩す獯蚩?光學(xué)穿孔,光學(xué)捕獲,光學(xué)相干
    發(fā)表于 12-19 12:39

    相控陣雷達(dá)電源芯片詳解

    和性能的提升,同時(shí)也對(duì)整個(gè)系統(tǒng)的集成度要求越來越高。二相控陣雷達(dá)整體電源方案 相控陣雷達(dá)主要由天線陣列、相位器件、信號(hào)處理器、控制器四部分組成,信號(hào)處理器主要由FPGA、DSP等高性能
    發(fā)表于 11-17 10:53

    分析DCDC4644電源芯片在F-35戰(zhàn)機(jī)相控陣雷達(dá)的應(yīng)用

    控和移相器控制,能得到精確可預(yù)測的輻射方向圖和波束指向。雷達(dá)工作時(shí)發(fā)射機(jī)通過饋線網(wǎng)絡(luò)將功率分配到每個(gè)天線單元,通過大量獨(dú)立的天線單元將能量輻射出去并在空間進(jìn)行功率合成,形成需要的波束指向。下圖是
    發(fā)表于 10-31 17:34

    DCDC 4644 電源芯片在相控陣雷達(dá)的應(yīng)用

    控和移相器控制,能得到精確可預(yù)測的輻射方向圖和波束指向。雷達(dá)工作時(shí)發(fā)射機(jī)通過饋線網(wǎng)絡(luò)將功率分配到每個(gè)天線單元,通過大量獨(dú)立的天線單元將能量輻射出去并在空間進(jìn)行功率合成,形成需要的波束指向。下圖是
    的頭像 發(fā)表于 10-29 16:47 ?318次閱讀
    DCDC 4644 電源芯片在<b class='flag-5'>相控陣</b>雷達(dá)的應(yīng)用

    透鏡和它產(chǎn)生的各種環(huán)形光束應(yīng)用

    透鏡與貝塞爾光束與非球面透鏡相比,透鏡的形狀類似于圓錐體。由于透鏡的錐形形狀,可以產(chǎn)生所謂的貝塞爾光束,即環(huán)形光束輪廓。環(huán)形光束的直徑取決于軸心角,并隨著軸心角和像平面之間距離的增加而減小
    的頭像 發(fā)表于 09-12 08:05 ?590次閱讀
    <b class='flag-5'>錐</b>透鏡和它產(chǎn)生的各種環(huán)形光束應(yīng)用

    OPA657做的跨阻放大器,輸出過零時(shí)失真了,被頂了的原因?

    一個(gè)方向接,因?yàn)榘凑针娐穲D中方向,輸出是負(fù)值,我直接將光電二極管反接,輸出就是正的值了。當(dāng)完全按照電路接法(光電二極管與圖中一樣),輸出頂部(0V以上被頂)被
    發(fā)表于 08-23 07:29

    用于Ka波段衛(wèi)星通信的雙頻段圓極化無源相控陣天線

    電子發(fā)燒友網(wǎng)站提供《用于Ka波段衛(wèi)星通信的雙頻段圓極化無源相控陣天線.pdf》資料免費(fèi)下載
    發(fā)表于 07-23 12:44 ?2次下載

    Ka波段相控陣天線的平面近場單探頭測試方法

    電子發(fā)燒友網(wǎng)站提供《Ka波段相控陣天線的平面近場單探頭測試方法.pdf》資料免費(fèi)下載
    發(fā)表于 07-23 12:43 ?0次下載

    一種K頻段雙波束接收衛(wèi)通相控陣天線

    電子發(fā)燒友網(wǎng)站提供《一種K頻段雙波束接收衛(wèi)通相控陣天線.pdf》資料免費(fèi)下載
    發(fā)表于 07-23 12:42 ?0次下載

    我們一起揭秘ADC、相控陣天線、復(fù)雜電磁環(huán)境、高速信號(hào)完整性等測試方案

    朝陽區(qū)北辰東路8號(hào))舉行!中星聯(lián)華科技(北京)有限公司作為本次大會(huì)的重要支持單位,將為大家分享多通道ADC測試、高速ADC進(jìn)階測試、相控陣天線測試、復(fù)雜電磁環(huán)境模擬系
    的頭像 發(fā)表于 05-13 17:37 ?775次閱讀
    我們一起揭秘ADC、<b class='flag-5'>相控陣天線</b>、復(fù)雜電磁環(huán)境、高速信號(hào)完整性等測試方案

    天馬微電子推出低成本相控陣天線及電子設(shè)備

    本發(fā)明核心在于一種新型相控陣天線及配套電子設(shè)備,相控陣天線天線組件、投影組件和控制組件組成。其中,天線組件包含大量陣列式分布的
    的頭像 發(fā)表于 05-11 16:32 ?877次閱讀
    天馬微電子推出低成本<b class='flag-5'>相控陣天線</b>及電子設(shè)備

    相控陣雷達(dá)技術(shù)的開發(fā)方案

    由于強(qiáng)調(diào)將相控陣變成實(shí)用設(shè)備,因此建造了一個(gè)900MHz、十六元件線性陣列固定裝置作為陣列測試臺(tái),可以嘗試、測試和練習(xí)陣列組件,如天線元件、
    發(fā)表于 04-24 09:29 ?920次閱讀
    <b class='flag-5'>相控陣</b>雷達(dá)技術(shù)的開發(fā)方案

    關(guān)于天線方向圖的參數(shù)詳解

    定向天線的前后比是指主瓣的最大輻射方向(規(guī)定為0°)的功率通量密度與相反方向附近(規(guī)定為180°±20°范圍內(nèi))的最大功率通量密度之比值。
    的頭像 發(fā)表于 03-19 17:33 ?4198次閱讀
    關(guān)于<b class='flag-5'>天線方向圖</b>的參數(shù)詳解

    相控陣天線在星地融合網(wǎng)絡(luò)應(yīng)用的關(guān)鍵技術(shù)

    數(shù)字波束成形的典型應(yīng)用是 Satixfy 公司L頻段32通道數(shù)字采樣延時(shí)芯片Prime,該芯片可實(shí)現(xiàn)任意極化的數(shù)字控制,多個(gè)芯片級(jí)聯(lián)支持大規(guī)模數(shù)字陣列形成。
    發(fā)表于 02-28 10:29 ?4241次閱讀
    <b class='flag-5'>相控陣天線</b>在星地融合網(wǎng)絡(luò)應(yīng)用的關(guān)鍵技術(shù)

    基于超表面天線陣列的射頻前端與數(shù)字后端聯(lián)合抗干擾方案

    本文提出一種基于超表面天線陣列的射頻前端與數(shù)字后端聯(lián)合抗干擾方案,利用超表面天線快速可重構(gòu)能力,對(duì)同一信號(hào)切換不同方向接收,令單通道等效為多通道,提高
    發(fā)表于 02-20 11:01 ?565次閱讀
    基于超表面<b class='flag-5'>天線陣列</b>的射頻前端與數(shù)字后端聯(lián)合抗干擾方案