作為"現(xiàn)實世界"模擬域與 1 和 0 構(gòu)成的數(shù)字世界之間的關(guān)口,數(shù)據(jù)轉(zhuǎn)換器是現(xiàn)代信號處理中的關(guān)鍵要素之一。過去 30 年,數(shù)據(jù)轉(zhuǎn)換領(lǐng)域涌現(xiàn)出了大量創(chuàng)新技術(shù),這些技術(shù)不但助推了從醫(yī)療成像到蜂窩通信、再到消費音視頻,各個領(lǐng)域的性能提升和架構(gòu)進(jìn)步,同時還為實現(xiàn)全新應(yīng)用發(fā)揮了重要作用。
寬帶通信和高性能成像應(yīng)用的持續(xù)擴(kuò)張凸顯出 高速數(shù)據(jù)轉(zhuǎn)換的特殊重要性:轉(zhuǎn)換器要能處理帶寬范圍在 10 MHz 至 1 GHz 以上的信號。人們通過多種各樣的轉(zhuǎn)換器架構(gòu)來實現(xiàn)這些較高的速率,各有其優(yōu)勢。高速下在模擬域和數(shù)字域之間來回切換也對信號完整性提出了一些特殊的挑戰(zhàn)——不僅模擬信號如此,時鐘和數(shù)據(jù)信號亦是如此。了解這些問題不僅對于組件選擇十分重要,而且甚至?xí)绊懻w系統(tǒng)架構(gòu)的選擇。
圖 1.
更快、更快、更快
在許多技術(shù)領(lǐng)域,我們習(xí)慣于把技術(shù)進(jìn)步與更高的速率關(guān)聯(lián)起來: 從以太網(wǎng)到無線局域網(wǎng)再到蜂窩移動網(wǎng)絡(luò),數(shù)據(jù)通信的實質(zhì)就是不斷提高數(shù)據(jù)傳輸速率。通過時鐘速率的進(jìn)步,微處理器、數(shù)字信號處理器和 FPGA 發(fā)展十分迅速。這些器件主要得益于尺寸不斷縮小的蝕刻工藝,結(jié)果造就出開關(guān)速率更快、體積更小(而且功耗更低)的晶體管。這些進(jìn)步創(chuàng)造出一個處理能力和數(shù)據(jù)帶寬呈指數(shù)級增長的環(huán)境。這些強(qiáng)大的數(shù)字引擎帶來了同樣呈指數(shù)級增長的信號和數(shù)據(jù)處理需求:從靜態(tài)圖像到視頻,到帶寬頻譜,無論是有線還是無線,均是如此。運行時鐘速率為 100 MHz 的處理器或許能有效地處理帶寬為 1 MHz 至 10 MHz 的信號:運行時鐘速率達(dá)數(shù) GHz 的處理器能夠處理帶寬達(dá)數(shù)百 MHz 的信號。
自然地,更強(qiáng)的處理能力、更高的處理速率會導(dǎo)致更快的數(shù)據(jù)轉(zhuǎn)換:寬帶信號擴(kuò)大其帶寬(往往達(dá)到物理或監(jiān)管機(jī)構(gòu)設(shè)定的頻譜極限),成像系統(tǒng)尋求提高每秒像素處理能力,以便更加快速地處理更高分辨率的圖像。系統(tǒng)架構(gòu)推陳出新,以利用極高的這種處理性能,其中還出現(xiàn)了并行處理的趨勢,這可能意味著對多通道數(shù)據(jù)轉(zhuǎn)換器的需求。
架構(gòu)上的另一重要變化是走向多載波 / 多通道,甚至軟件定義系統(tǒng)的趨勢。傳統(tǒng)的模擬密集型系統(tǒng)在模擬域中完成許多信號調(diào)理工作(濾波、放大、頻率轉(zhuǎn)換);在經(jīng)過充分準(zhǔn)備后,對信號進(jìn)行數(shù)字化處理。一個例子是 FM 廣播:給定電臺的通道寬度通常為 200 kHz,F(xiàn)M 頻段范圍為 88 MHz 至 108 MHz。傳統(tǒng)接收器把目標(biāo)電臺的頻率轉(zhuǎn)換成 10.7 MHz 的中頻,過濾掉所有其他通道,并把信號放大到最佳解調(diào)幅度。多載波架構(gòu)將整個 20 MHz FM 頻段數(shù)字化,并利用數(shù)字處理技術(shù)來選擇和恢復(fù)目標(biāo)電臺。雖然多載波方案需要采用復(fù)雜得多的電路,但它具有極大的系統(tǒng)優(yōu)勢:系統(tǒng)可以同時恢復(fù)多個電臺,包括邊頻電臺。如果設(shè)計得當(dāng),多載波系統(tǒng)甚至可以通過軟件重新配置,以支持新的標(biāo)準(zhǔn)(例如,分配在無線電邊頻帶的新型高清電臺)。這種方式的最終目標(biāo)是采用可以接納所有頻帶的寬帶數(shù)字化儀和可以恢復(fù)任何信號的強(qiáng)大處理器:這即是所謂的軟件定義無線電。其他領(lǐng)域中有等效的架構(gòu)——軟件定義儀表、軟件定義攝像頭等。我們可以把這些當(dāng)作虛擬化的信號處理等效物。使得諸如此類靈活架構(gòu)成為可能的是強(qiáng)大的數(shù)字處理技術(shù)以及高速、高性能數(shù)據(jù)轉(zhuǎn)換技術(shù)。
圖 2. 多載波示例
帶寬和動態(tài)范圍
無論是模擬還是數(shù)字信號處理,其基本維度都是帶寬和動態(tài)范圍——這兩個因素決定著系統(tǒng)實際可以處理的信息量。在通信領(lǐng)域,克勞德?香農(nóng)的理論就使用這兩個維度來描述一個通信通道可以攜帶的信息量的基本理論限值,但其原理卻適用于多個領(lǐng)域。對于成像系統(tǒng),帶寬決定著給定時間可以處理的像素量,動態(tài)范圍決定著最暗的可覺察光源與像素飽和點之間的強(qiáng)度或色彩范圍。
圖 3. 信號處理的基本維度
數(shù)據(jù)轉(zhuǎn)換器的可用帶寬有一個由奈奎斯特采樣理論設(shè)定的基本理論限值——為了表示或處理帶寬為 F 的信號,我們需要使用運行采樣速率至少為 2 F 的數(shù)據(jù)轉(zhuǎn)換器(請注意,本法則適用于任何采樣數(shù)據(jù)系統(tǒng)——模擬或數(shù)字都適用)。對于實際系統(tǒng),一定量的過采樣可極大地簡化系統(tǒng)設(shè)計,因此,更典型的數(shù)值是信號帶寬的 2.5 至 3 倍。如前所述,不斷增加的處理能力可提高系統(tǒng)處理更高帶寬的能力,而蜂窩電話、電纜系統(tǒng)、有線和無線局域網(wǎng)、圖像處理以及儀器儀表等系統(tǒng)都在朝著帶寬更高的系統(tǒng)發(fā)展。這種不斷提高帶寬需求要求數(shù)據(jù)轉(zhuǎn)換器具備更高的采樣速率。
如果說帶寬這個維度直觀易懂,那么動態(tài)范圍這個維度則可能稍顯晦澀。在信號處理中,動態(tài)范圍表示系統(tǒng)可以處理且不發(fā)生飽和或削波的最大信號與系統(tǒng)可以有效捕獲的最小信號之間的分布范圍。我們可以考慮兩類動態(tài)范圍:可配置動態(tài)范圍可以通過在低分辨率模數(shù)轉(zhuǎn)換器(ADC)之前放置一個可編程增益放大器(PGA)來實現(xiàn)(假設(shè)對于 12 位的可配置動態(tài)范圍,在一個 8 位轉(zhuǎn)換器前放置一個 4 位 PGA):當(dāng)增益設(shè)為低值時,這種配置可以捕獲大信號而不會超過轉(zhuǎn)換器的范圍。當(dāng)信號超小時,可將 PGA 設(shè)為高增益,以將信號放大到轉(zhuǎn)換器的噪底以上。信號可能是一個信號強(qiáng)或信號弱的電臺,也可能是成像系統(tǒng)中的一個明亮或暗淡的像素。對于一次只嘗試恢復(fù)一個信號的傳統(tǒng)信號處理架構(gòu)來說,這種可配置動態(tài)范圍可能是非常有效的。
瞬時動態(tài)范圍更加強(qiáng)大:在這種配置中,系統(tǒng)擁有充足的動態(tài)范圍,能夠同時捕獲大信號而不產(chǎn)生削波現(xiàn)象,同時還能恢復(fù)小信號——現(xiàn)在,我們可能需要一個 14 位的轉(zhuǎn)換器。該原理適用于多種應(yīng)用——恢復(fù)強(qiáng)電臺或弱電臺信號,恢復(fù)手機(jī)信號,或者恢復(fù)圖像的超亮和超暗部分。在系統(tǒng)傾向使用更加復(fù)雜的信號處理算法的同時,對動態(tài)范圍的需求也是水漲船高的走向。在這種情況下,系統(tǒng)可以處理更多信號——如果全部信號都具有相同的強(qiáng)度,并且需要處理兩倍的信號,則需要增加 3 dB 的動態(tài)范圍(在所有其他條件相等的情況下)??赡芨匾氖?,如前所述,如果系統(tǒng)需要同時處理強(qiáng)信號和弱信號,則動態(tài)范圍的增量要求可能要大得多。
動態(tài)范圍的不同衡量指標(biāo)
在數(shù)字信號處理中,動態(tài)范圍的關(guān)鍵參數(shù)是信號表示中的位數(shù),或稱字長:一個 32 位處理器的動態(tài)范圍多于一個 16 位的處理器。過大的信號將發(fā)生削波——這是一種高度非線性的運算,會破壞多數(shù)信號的完整性。過小的信號——幅度小于 1 LSB——將變得不可檢測并丟失掉。這個有限分辨率通常稱為量化誤差,或量化噪聲,在確立可檢測性下限時可能是一個重要因素。
量化噪聲也是混合信號系統(tǒng)中的一個因素,但有多個因素決定著數(shù)據(jù)轉(zhuǎn)換器的可用動態(tài)范圍,而且每個因素都自己的動態(tài)范圍
信噪比(SNR)——轉(zhuǎn)換器的滿量程與頻帶總噪聲之比。該噪聲可能來自量化噪聲(如上所述)、熱噪聲(所有現(xiàn)實系統(tǒng)中都存在)或其他誤差項(如抖動)。
靜態(tài)非線性度——微分非線性度(DNL)和積分非線性度(INL)——衡量從數(shù)據(jù)轉(zhuǎn)換器輸入端到輸出端的直流傳遞函數(shù)的非理想程度的指標(biāo)(DNL 通常確定成像系統(tǒng)的動態(tài)范圍)。
總諧波失真——靜態(tài)和動態(tài)非線性度會產(chǎn)生諧音,可能有效地屏蔽其他信號。THD 通常會限制音頻系統(tǒng)的有效動態(tài)范圍。
無雜散動態(tài)范圍(SFDR)——考慮相對于輸入信號的最高頻譜雜散,無論是二階還是三階諧波時鐘饋通,甚至是 60 Hz 的"嗡嗡"噪聲。由于頻譜音或雜散可能屏蔽小信號,因此,SFDR 是用來表示許多通信系統(tǒng)中可用動態(tài)范圍的一個良好指標(biāo)。
還有其他技術(shù)規(guī)格——事實上,每種應(yīng)用可能都有自己的有效動態(tài)范圍描述方式。開始時,數(shù)據(jù)轉(zhuǎn)換器的分辨率是其動態(tài)范圍的一個良好替代指標(biāo),但在真正決定時選擇正確的技術(shù)規(guī)格是非常重要的。關(guān)鍵原則是,越多越好。雖然許多系統(tǒng)可以立即意識到需要更高的信號處理帶寬,但對動態(tài)范圍的需求卻可能不是如此直觀,即便要求更加苛刻。
值得注意的是,盡管帶寬和動態(tài)范圍是信號處理的兩個主要維度,但還有必要考慮第三個維度,即效率:這有助于我們回答這樣一個問題:"為了實現(xiàn)額外性能,我需要付出多少成本?"我們可以從購置價格來看成本,但對數(shù)據(jù)轉(zhuǎn)換器和其他電子信號處理應(yīng)用來說,一種更加純粹的、衡量成本的技術(shù)手段是功耗。性能越高的系統(tǒng)——更大的帶寬或動態(tài)范圍——往往要消耗更多的電能。隨著技術(shù)的進(jìn)步,我們都試圖在提高帶寬和動態(tài)范圍的同時減少功耗。
-
轉(zhuǎn)換器
+關(guān)注
關(guān)注
27文章
8738瀏覽量
147576 -
數(shù)字信號
+關(guān)注
關(guān)注
2文章
975瀏覽量
47608
發(fā)布評論請先 登錄
相關(guān)推薦
評論