0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度神經(jīng)網(wǎng)絡(luò),通過使用數(shù)學(xué)模型來處理圖像

倩倩 ? 來源:新經(jīng)網(wǎng) ? 作者:新經(jīng)網(wǎng) ? 2020-12-16 10:22 ? 次閱讀

它們具有看似復(fù)雜的結(jié)果,但也有可能被愚弄,范圍從相對無害-將動物誤識別為另一動物-到引導(dǎo)自動駕駛汽車的網(wǎng)絡(luò)將停車標(biāo)志誤解為指示停車標(biāo)志的潛在危險是可以安全進(jìn)行的。

休斯頓大學(xué)的一位哲學(xué)家在發(fā)表于《自然機(jī)器智能》上的一篇論文中暗示,關(guān)于這些假定故障背后原因的普遍假設(shè)可能是錯誤的,這些信息對于評估這些網(wǎng)絡(luò)的可靠性至關(guān)重要。

隨著機(jī)器學(xué)習(xí)和其他形式的人工智能越來越深入地融入社會,從自動柜員機(jī)到網(wǎng)絡(luò)安全系統(tǒng),其用途廣泛,UH哲學(xué)副教授卡梅倫·巴克納(Cameron Buckner)表示,了解由什么導(dǎo)致的明顯故障的來源至關(guān)重要。

研究人員稱其為“對抗性例子”,是指當(dāng)深度神經(jīng)網(wǎng)絡(luò)系統(tǒng)遇到用于構(gòu)建網(wǎng)絡(luò)的訓(xùn)練輸入之外的信息時,會誤判圖像或其他數(shù)據(jù)。它們很罕見,被稱為“對抗性”,因為它們通常是由另一個機(jī)器學(xué)習(xí)網(wǎng)絡(luò)創(chuàng)建或發(fā)現(xiàn)的-機(jī)器學(xué)習(xí)領(lǐng)域中的一種邊緣技術(shù),介于創(chuàng)建復(fù)雜示例的更復(fù)雜方法與檢測和避免它們的更復(fù)雜方法之間。

巴克納說:“這些對抗性事件中的一些反而可能是人工產(chǎn)物,為了更好地了解這些網(wǎng)絡(luò)的可靠性,我們需要更好地了解它們是什么?!?/p>

換句話說,不發(fā)火可能是由網(wǎng)絡(luò)需要處理的內(nèi)容和所涉及的實際模式之間的相互作用引起的。這與完全被誤解不是完全一樣的。

巴克納寫道:“理解對抗性例子的含義需要探索第三種可能性:至少其中一些模式是人工制品?!薄啊虼耍壳昂唵蔚貋G棄這些模式既有代價,也有天真地使用它們的危險?!?/p>

導(dǎo)致這些機(jī)器學(xué)習(xí)系統(tǒng)犯錯誤的對抗事件不一定是故意的瀆職造成的,但這是最高的風(fēng)險所在。

巴克納說:“這意味著惡意行為者可能欺騙依賴于本來可靠的網(wǎng)絡(luò)的系統(tǒng)?!薄澳怯邪踩珣?yīng)用程序?!?/p>

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    殘差網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)

    殘差網(wǎng)絡(luò)(Residual Network,通常簡稱為ResNet) 是深度神經(jīng)網(wǎng)絡(luò)的一種 ,其獨特的結(jié)構(gòu)設(shè)計在解決深層網(wǎng)絡(luò)訓(xùn)練中的梯度消失和梯度爆炸問題上取得了顯著的突破,并因此成為
    的頭像 發(fā)表于 07-11 18:13 ?1156次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)通常被用來處理具有顯著空間層次結(jié)構(gòu)的數(shù)據(jù),特別是圖像和視頻數(shù)據(jù)。它們通過模擬人類視覺
    的頭像 發(fā)表于 07-11 14:51 ?865次閱讀

    pytorch中有神經(jīng)網(wǎng)絡(luò)模型

    處理、語音識別等領(lǐng)域取得了顯著的成果。PyTorch是一個開源的深度學(xué)習(xí)框架,由Facebook的AI研究團(tuán)隊開發(fā)。它以其易用性、靈活性和高效性而受到廣泛歡迎。在PyTorch中,有許多預(yù)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-11 09:59 ?762次閱讀

    rnn是什么神經(jīng)網(wǎng)絡(luò)模型

    領(lǐng)域有著廣泛的應(yīng)用。 RNN的基本概念 1.1 神經(jīng)網(wǎng)絡(luò)的基本概念 神經(jīng)網(wǎng)絡(luò)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)的數(shù)學(xué)模型,它由多個神經(jīng)元(或稱為節(jié)點)
    的頭像 發(fā)表于 07-05 09:50 ?674次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練的基本原理

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而構(gòu)建的數(shù)學(xué)模型,用于模擬人腦處理信息的方式。它在機(jī)器學(xué)習(xí)和
    的頭像 發(fā)表于 07-05 09:16 ?751次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型是一種什么模型

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而產(chǎn)生的數(shù)學(xué)模型,用于模擬人腦處理信息的方式。它由大量的節(jié)點(或稱為
    的頭像 發(fā)表于 07-04 16:57 ?1001次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    基本概念、結(jié)構(gòu)、訓(xùn)練過程以及應(yīng)用場景。 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 神經(jīng)網(wǎng)絡(luò) 神經(jīng)網(wǎng)絡(luò)是一種受人腦神經(jīng)元結(jié)構(gòu)啟發(fā)的數(shù)學(xué)模型,由大量的節(jié)點
    的頭像 發(fā)表于 07-02 14:44 ?747次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)圖像識別中的應(yīng)用

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理
    的頭像 發(fā)表于 07-02 14:28 ?1237次閱讀

    數(shù)學(xué)建模神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點有哪些

    數(shù)學(xué)建模神經(jīng)網(wǎng)絡(luò)模型是一種基于人工神經(jīng)網(wǎng)絡(luò)數(shù)學(xué)建模方法,它通過模擬人腦
    的頭像 發(fā)表于 07-02 11:36 ?970次閱讀

    神經(jīng)網(wǎng)絡(luò)數(shù)學(xué)建模中的應(yīng)用

    數(shù)學(xué)建模是一種利用數(shù)學(xué)方法和工具來描述和分析現(xiàn)實世界問題的過程。神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元結(jié)構(gòu)和功能的計算模型,可以用于解決各種復(fù)雜問題。
    的頭像 發(fā)表于 07-02 11:29 ?1036次閱讀

    深度神經(jīng)網(wǎng)絡(luò)模型cnn的基本概念、結(jié)構(gòu)及原理

    ,其核心是構(gòu)建具有多層結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,以實現(xiàn)對復(fù)雜數(shù)據(jù)的高效表示和處理。在眾多深度學(xué)習(xí)模型中,卷積
    的頭像 發(fā)表于 07-02 10:11 ?9873次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的含義和用途是

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而構(gòu)建的數(shù)學(xué)模型,它通過模擬人腦神經(jīng)
    的頭像 發(fā)表于 07-02 10:07 ?929次閱讀

    闡述人工神經(jīng)網(wǎng)絡(luò)模型的基本原理

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,簡稱ANN)是一種模仿人腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能的數(shù)學(xué)模型,它由大量的神經(jīng)元(或稱為節(jié)點、單元)
    的頭像 發(fā)表于 07-02 10:03 ?937次閱讀

    深度神經(jīng)網(wǎng)絡(luò)模型有哪些

    深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,DNNs)是一類具有多個隱藏層的神經(jīng)網(wǎng)絡(luò),它們在許多領(lǐng)域取得了顯著的成功,如計算機(jī)視覺、自然語言處理、語音識別等。以下是一些常見
    的頭像 發(fā)表于 07-02 10:00 ?1579次閱讀

    神經(jīng)網(wǎng)絡(luò)模型的原理、類型、應(yīng)用場景及優(yōu)缺點

    神經(jīng)網(wǎng)絡(luò)模型是一種基于人工神經(jīng)元的數(shù)學(xué)模型,用于模擬人腦的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能。神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-02 09:56 ?1623次閱讀