0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

BERT是一種用于自然語言處理的先進神經(jīng)網(wǎng)絡(luò)方法

倩倩 ? 來源:互聯(lián)網(wǎng)分析沙龍 ? 作者:互聯(lián)網(wǎng)分析沙龍 ? 2020-12-13 10:08 ? 次閱讀

在一篇新論文中,F(xiàn)rankle及其同事發(fā)現(xiàn)了潛伏在BERT中的此類子網(wǎng),BERT是一種用于自然語言處理(NLP)的先進神經(jīng)網(wǎng)絡(luò)方法。作為人工智能的一個分支,NLP旨在通過預(yù)測文本生成或在線聊天機器人等應(yīng)用程序來解密和分析人類語言。在計算方面,BERT體積龐大,通常需要大多數(shù)用戶無法獲得的超級計算能力。從而可能使更多用戶在智能手機上開發(fā)有效的NLP工具。

弗蘭克勒說:“我們正在達到必須使這些模型更精簡,更高效的地步。”他補充說,這一進步有一天可能會“減少NLP的準入門檻”。

麻省理工學(xué)院計算機科學(xué)與人工智能實驗室的邁克爾·卡賓小組的博士生Frankle是該研究的共同作者,該研究將于下個月在神經(jīng)信息處理系統(tǒng)會議上發(fā)表。德克薩斯大學(xué)奧斯汀分校的陳天龍是該論文的主要作者,其中包括得克薩斯州A&M的合作者Wang Zhangyang Wang,以及所有MIT-IBM Watson AI Lab的常石宇,劉思佳和張揚。

您今天可能已經(jīng)與BERT網(wǎng)絡(luò)進行了互動。這是Google搜索引擎的基礎(chǔ)技術(shù)之一,自Google于2018年發(fā)布BERT以來,它一直引起研究人員的興奮。BERT是一種創(chuàng)建神經(jīng)網(wǎng)絡(luò)的方法-使用分層節(jié)點或“神經(jīng)元”的算法來學(xué)習(xí)執(zhí)行通過培訓(xùn)大量實例來完成一項任務(wù)。

BERT是通過反復(fù)嘗試填寫寫作段落中遺漏的單詞來進行訓(xùn)練的,它的功能在于此初始訓(xùn)練數(shù)據(jù)集的龐大大小。然后,用戶可以將BERT的神經(jīng)網(wǎng)絡(luò)微調(diào)至特定任務(wù),例如構(gòu)建客戶服務(wù)聊天機器人。但是爭吵的BERT需要大量的處理能力。

弗蘭克爾說:“如今,標準的BERT模型-園林品種-具有3.4億個參數(shù),”他補充說,這個數(shù)字可以達到10億。對如此龐大的網(wǎng)絡(luò)進行微調(diào)可能需要一臺超級計算機?!斑@簡直太貴了。這遠遠超出了您或我的計算能力。”

為了削減計算成本,Chen和他的同事試圖找出隱藏在BERT中的較小模型。他們通過迭代修剪整個BERT網(wǎng)絡(luò)的參數(shù)進行了實驗,然后將新子網(wǎng)的性能與原始BERT模型的性能進行了比較。他們對一系列NLP任務(wù)進行了此比較,從回答問題到填充句子中的空白詞。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為
    的頭像 發(fā)表于 11-15 14:58 ?331次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)自然語言處理中的應(yīng)用

    自然語言處理(NLP)是人工智能領(lǐng)域的個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,循環(huán)神經(jīng)網(wǎng)絡(luò)(RN
    的頭像 發(fā)表于 11-15 09:41 ?351次閱讀

    使用LSTM神經(jīng)網(wǎng)絡(luò)處理自然語言處理任務(wù)

    自然語言處理(NLP)是人工智能領(lǐng)域的個重要分支,它旨在使計算機能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是循環(huán)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 09:56 ?474次閱讀

    自然語言處理前饋網(wǎng)絡(luò)綜述

    自然語言處理(NLP)前饋網(wǎng)絡(luò)是人工智能和語言學(xué)領(lǐng)域的個重要交叉學(xué)科,旨在通過計算機模型理解和處理
    的頭像 發(fā)表于 07-12 10:10 ?372次閱讀

    怎么對神經(jīng)網(wǎng)絡(luò)重新訓(xùn)練

    重新訓(xùn)練神經(jīng)網(wǎng)絡(luò)個復(fù)雜的過程,涉及到多個步驟和考慮因素。 引言 神經(jīng)網(wǎng)絡(luò)一種強大的機器學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、
    的頭像 發(fā)表于 07-11 10:25 ?519次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)的實現(xiàn)方法

    (Recurrent Neural Network,通常也簡稱為RNN,但在此處為區(qū)分,我們將循環(huán)神經(jīng)網(wǎng)絡(luò)稱為Recurrent RNN)不同,遞歸神經(jīng)網(wǎng)絡(luò)更側(cè)重于處理樹狀或圖結(jié)構(gòu)的數(shù)據(jù),如句法分析樹、
    的頭像 發(fā)表于 07-10 17:02 ?374次閱讀

    基于神經(jīng)網(wǎng)絡(luò)語言模型有哪些

    基于神經(jīng)網(wǎng)絡(luò)語言模型(Neural Language Models, NLMs)是現(xiàn)代自然語言處理(NLP)領(lǐng)域的個重要組成部分,它們通
    的頭像 發(fā)表于 07-10 11:15 ?851次閱讀

    前饋神經(jīng)網(wǎng)絡(luò)自然語言處理中的應(yīng)用

    自然語言處理(Natural Language Processing, NLP)作為人工智能領(lǐng)域的個重要分支,旨在讓計算機能夠理解和處理人類語言
    的頭像 發(fā)表于 07-08 17:00 ?433次閱讀

    RNN神經(jīng)網(wǎng)絡(luò)用于什么

    RNN(Recurrent Neural Network,循環(huán)神經(jīng)網(wǎng)絡(luò))是一種具有循環(huán)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),它可以處理序列數(shù)據(jù),具有記憶功能。RNN在許多領(lǐng)域都有廣泛的應(yīng)用,以下是
    的頭像 發(fā)表于 07-04 15:04 ?1055次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)主要應(yīng)用于哪種類型數(shù)據(jù)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)是一種具有循環(huán)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù)。它在許多領(lǐng)域都有廣泛的應(yīng)用,以下是對遞歸
    的頭像 發(fā)表于 07-04 14:58 ?883次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)的應(yīng)用場景有哪些

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)是一種具有記憶功能的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),廣泛應(yīng)用于
    的頭像 發(fā)表于 07-04 14:39 ?1630次閱讀

    用于自然語言處理神經(jīng)網(wǎng)絡(luò)有哪些

    取得了顯著進展,成為處理自然語言任務(wù)的主要工具。本文將詳細介紹幾種常用于NLP的神經(jīng)網(wǎng)絡(luò)模型,包括遞歸神經(jīng)網(wǎng)絡(luò)(RNN)、長短時記憶
    的頭像 發(fā)表于 07-03 16:17 ?1384次閱讀

    自然語言處理是什么技術(shù)的一種應(yīng)用

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能和語言學(xué)領(lǐng)域的個分支,它涉及到使用計算機技術(shù)來處理
    的頭像 發(fā)表于 07-03 14:18 ?1130次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理
    的頭像 發(fā)表于 07-02 14:44 ?782次閱讀

    神經(jīng)網(wǎng)絡(luò)自然語言處理中的應(yīng)用

    自然語言處理(NLP)是人工智能領(lǐng)域中的個重要分支,它研究的是如何使計算機能夠理解和生成人類自然語言。隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-01 14:09 ?583次閱讀