0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

為什么半監(jiān)督學(xué)習(xí)是機(jī)器學(xué)習(xí)的未來(lái)?

深度學(xué)習(xí)自然語(yǔ)言處理 ? 來(lái)源:深度學(xué)習(xí)自然語(yǔ)言處理 ? 作者:Andre Ye ? 2020-11-27 10:42 ? 次閱讀

為什么半監(jiān)督學(xué)習(xí)是機(jī)器學(xué)習(xí)的未來(lái)。

監(jiān)督學(xué)習(xí)是人工智能領(lǐng)域的第一種學(xué)習(xí)類(lèi)型。從它的概念開(kāi)始,無(wú)數(shù)的算法,從簡(jiǎn)單的邏輯回歸到大規(guī)模的神經(jīng)網(wǎng)絡(luò),都已經(jīng)被研究用來(lái)提高精確度和預(yù)測(cè)能力。

然而,一個(gè)重大突破揭示了添加“無(wú)監(jiān)督數(shù)據(jù)”可以提高模型泛化和性能。事實(shí)上,在非常多的場(chǎng)景中,帶有標(biāo)簽的數(shù)據(jù)并不容易獲得。半監(jiān)督學(xué)習(xí)可以在標(biāo)準(zhǔn)的任務(wù)中實(shí)現(xiàn)SOTA的效果,只需要一小部分的有標(biāo)記數(shù)據(jù) —— 數(shù)百個(gè)訓(xùn)練樣本。

在這個(gè)我們對(duì)半監(jiān)督學(xué)習(xí)的探索中,我們會(huì)有:

半監(jiān)督學(xué)習(xí)簡(jiǎn)介。什么是半監(jiān)督學(xué)習(xí),它與其他學(xué)習(xí)方法相比如何,半監(jiān)督學(xué)習(xí)算法的框架/思維過(guò)程是什么?

算法:Semi-Supervised GANs。與傳統(tǒng)GANs的比較,過(guò)程的解釋?zhuān)氡O(jiān)督GANs的性能。

用例和機(jī)器學(xué)習(xí)的未來(lái)。為什么半監(jiān)督學(xué)習(xí)會(huì)有如此大的需求,哪里可以應(yīng)用。

半監(jiān)督學(xué)習(xí)介紹

半監(jiān)督學(xué)習(xí)算法代表了監(jiān)督和非監(jiān)督算法的中間地帶。雖然沒(méi)有正式定義為機(jī)器學(xué)習(xí)的“第四個(gè)”元素(監(jiān)督、無(wú)監(jiān)督、強(qiáng)化),但它將前兩個(gè)方面結(jié)合成一種自己的方法。

這些算法操作的數(shù)據(jù)有一些標(biāo)簽,但大部分是沒(méi)有標(biāo)簽的。傳統(tǒng)上,人們要么選擇有監(jiān)督學(xué)習(xí)的方式,只對(duì)帶有標(biāo)簽的數(shù)據(jù)進(jìn)行操作,這將極大地減小數(shù)據(jù)集的規(guī)模,要么,就會(huì)選擇無(wú)監(jiān)督學(xué)習(xí)的方式,丟棄標(biāo)簽保留數(shù)據(jù)集的其余部分,然后做比如聚類(lèi)之類(lèi)的工作。

這在現(xiàn)實(shí)世界中是很常見(jiàn)的。由于標(biāo)注是很昂貴的,特別是大規(guī)模數(shù)據(jù)集,特別是企業(yè)用途的,可能只有幾個(gè)標(biāo)簽。例如,考慮確定用戶(hù)活動(dòng)是否具有欺詐性。在100萬(wàn)用戶(hù)中,該公司知道有1萬(wàn)用戶(hù)是這樣的,但其他9萬(wàn)用戶(hù)可能是惡意的,也可能是良性的。半監(jiān)督學(xué)習(xí)允許我們操作這些類(lèi)型的數(shù)據(jù)集,而不必在選擇監(jiān)督學(xué)習(xí)或非監(jiān)督學(xué)習(xí)時(shí)做出權(quán)衡。

一般來(lái)說(shuō),半監(jiān)督學(xué)習(xí)算法在這個(gè)框架上運(yùn)行:

半監(jiān)督機(jī)器學(xué)習(xí)算法使用有限的標(biāo)記樣本數(shù)據(jù)集來(lái)訓(xùn)練自己,從而形成一個(gè)“部分訓(xùn)練”的模型。

部分訓(xùn)練的模型對(duì)未標(biāo)記的數(shù)據(jù)進(jìn)行標(biāo)記。由于樣本標(biāo)記數(shù)據(jù)集有許多嚴(yán)重的限制(例如,在現(xiàn)實(shí)數(shù)據(jù)中的選擇偏差),標(biāo)記的結(jié)果被認(rèn)為是“偽標(biāo)簽”數(shù)據(jù)。

結(jié)合標(biāo)記和偽標(biāo)簽數(shù)據(jù)集,創(chuàng)建一個(gè)獨(dú)特的算法,結(jié)合描述和預(yù)測(cè)方面的監(jiān)督和非監(jiān)督學(xué)習(xí)。

半監(jiān)督學(xué)習(xí)利用分類(lèi)過(guò)程來(lái)識(shí)別數(shù)據(jù)資產(chǎn),利用聚類(lèi)過(guò)程將其分成不同的部分。

算法:Semi-Supervised GAN

半監(jiān)督的GAN,簡(jiǎn)稱(chēng)為SGAN,是[生成對(duì)抗網(wǎng)絡(luò)](https://medium.com/analytics-vidhya/gans-for-one -an-直覺(jué)解釋-革命概念-2f962c858b95)架構(gòu)的一個(gè)變體,用于解決半監(jiān)督學(xué)習(xí)問(wèn)題。

在傳統(tǒng)的GAN中,判別器被訓(xùn)練來(lái)預(yù)測(cè)由生成器模型生成的圖像是真實(shí)的還是假的,允許它從圖像中學(xué)習(xí)判別特征,即使沒(méi)有標(biāo)簽。盡管大多數(shù)人通常在GANs中使用訓(xùn)練很好的生成器,可以生成和數(shù)據(jù)集中相似的圖像,判別器還是可以通過(guò)以轉(zhuǎn)移學(xué)習(xí)作為起點(diǎn)在相同的數(shù)據(jù)集上建立分類(lèi)器,允許監(jiān)督任務(wù)從無(wú)監(jiān)督訓(xùn)練中受益。由于大部分的圖像特征已經(jīng)被學(xué)習(xí),因此進(jìn)行分類(lèi)的訓(xùn)練時(shí)間和準(zhǔn)確率會(huì)更好。

然而,在SGAN中,判別器同時(shí)接受兩種模式的訓(xùn)練:無(wú)監(jiān)督和監(jiān)督。

在無(wú)監(jiān)督模式中,需要區(qū)分真實(shí)圖像和生成的圖像,就像在傳統(tǒng)的GAN中一樣。

在監(jiān)督模式中,需要將一幅圖像分類(lèi)為幾個(gè)類(lèi),就像在標(biāo)準(zhǔn)的神經(jīng)網(wǎng)絡(luò)分類(lèi)器中一樣。

為了同時(shí)訓(xùn)練這兩種模式,判別器必須輸出1 + n個(gè)節(jié)點(diǎn)的值,其中1表示“真或假”節(jié)點(diǎn),n是預(yù)測(cè)任務(wù)中的類(lèi)數(shù)。

在半監(jiān)督GAN中,對(duì)判別器模型進(jìn)行更新,預(yù)測(cè)K+1個(gè)類(lèi),其中K為預(yù)測(cè)問(wèn)題中的類(lèi)數(shù),并為一個(gè)新的“假”類(lèi)添加額外的類(lèi)標(biāo)簽。它涉及到同時(shí)訓(xùn)練無(wú)監(jiān)督分類(lèi)任務(wù)和有監(jiān)督分類(lèi)任務(wù)的判別器模型。整個(gè)數(shù)據(jù)集都可以通過(guò)SGAN進(jìn)行傳遞 —— 當(dāng)一個(gè)訓(xùn)練樣本有標(biāo)簽時(shí),判別器的權(quán)值將被調(diào)整,否則,分類(lèi)任務(wù)將被忽略,判別器將調(diào)整權(quán)值以更好地區(qū)分真實(shí)的圖像和生成的圖像。

雖然允許SGAN進(jìn)行無(wú)監(jiān)督訓(xùn)練,允許模型從一個(gè)非常大的未標(biāo)記數(shù)據(jù)集中學(xué)習(xí)非常有用的特征提取,但有監(jiān)督學(xué)習(xí)允許模型利用提取的特征并將其用于分類(lèi)任務(wù)。其結(jié)果是一個(gè)分類(lèi)器可以在像MNIST這樣的標(biāo)準(zhǔn)問(wèn)題上取得令人難以置信的結(jié)果,即使是在非常非常少的標(biāo)記樣本(數(shù)十到數(shù)百個(gè))上進(jìn)行訓(xùn)練。

SGAN巧妙地結(jié)合了無(wú)監(jiān)督和監(jiān)督學(xué)習(xí)的方面,強(qiáng)強(qiáng)聯(lián)合,以最小的標(biāo)簽量,產(chǎn)生難以置信的結(jié)果。

用例和機(jī)器學(xué)習(xí)的未來(lái)

在一個(gè)可用數(shù)據(jù)量呈指數(shù)級(jí)增長(zhǎng)的時(shí)代,無(wú)監(jiān)督數(shù)據(jù)根本不能停下來(lái)等待標(biāo)注。無(wú)數(shù)真實(shí)世界的數(shù)據(jù)場(chǎng)景會(huì)像這樣出現(xiàn) —— 例如,YouTube視頻或網(wǎng)站內(nèi)容。從爬蟲(chóng)引擎和內(nèi)容聚合系統(tǒng)到圖像和語(yǔ)音識(shí)別,半監(jiān)督學(xué)習(xí)被廣泛應(yīng)用。

半監(jiān)督學(xué)習(xí)將監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)的過(guò)擬合和“不擬合”傾向(分別)結(jié)合起來(lái)的能力,創(chuàng)建了一個(gè)模型,在給出最小數(shù)量的標(biāo)記數(shù)據(jù)和大量的未標(biāo)記數(shù)據(jù)的情況下,可以出色地執(zhí)行分類(lèi)任務(wù)。除了分類(lèi)任務(wù),半監(jiān)督算法還有許多其他用途,如增強(qiáng)聚類(lèi)和異常檢測(cè)。盡管這一領(lǐng)域本身相對(duì)較新,但由于在當(dāng)今的數(shù)字領(lǐng)域中發(fā)現(xiàn)了巨大的需求,算法一直在不斷地被創(chuàng)造和完善。

半監(jiān)督學(xué)習(xí)確實(shí)是機(jī)器學(xué)習(xí)的未來(lái)。

原文標(biāo)題:比監(jiān)督學(xué)習(xí)做的更好:半監(jiān)督學(xué)習(xí)

文章出處:【微信公眾號(hào):深度學(xué)習(xí)自然語(yǔ)言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:比監(jiān)督學(xué)習(xí)做的更好:半監(jiān)督學(xué)習(xí)

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語(yǔ)言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場(chǎng)的未來(lái)
    的頭像 發(fā)表于 02-13 09:39 ?220次閱讀

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)機(jī)器
    的頭像 發(fā)表于 12-30 09:16 ?851次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營(yíng)等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?329次閱讀

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    來(lái)源:Master編程樹(shù)“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆](méi)有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?713次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    時(shí)空引導(dǎo)下的時(shí)間序列自監(jiān)督學(xué)習(xí)框架

    【導(dǎo)讀】最近,香港科技大學(xué)、上海AI Lab等多個(gè)組織聯(lián)合發(fā)布了一篇時(shí)間序列無(wú)監(jiān)督預(yù)訓(xùn)練的文章,相比原來(lái)的TS2Vec等時(shí)間序列表示學(xué)習(xí)工作,核心在于提出了將空間信息融入到預(yù)訓(xùn)練階段,即在預(yù)訓(xùn)練階段
    的頭像 發(fā)表于 11-15 11:41 ?559次閱讀
    時(shí)空引導(dǎo)下的時(shí)間序列自<b class='flag-5'>監(jiān)督學(xué)習(xí)</b>框架

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專(zhuān)門(mén)為深度學(xué)習(xí)機(jī)器
    的頭像 發(fā)表于 11-15 09:19 ?964次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類(lèi)似人類(lèi)智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2660次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    【《大語(yǔ)言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識(shí)學(xué)習(xí)

    收集海量的文本數(shù)據(jù)作為訓(xùn)練材料。這些數(shù)據(jù)集不僅包括語(yǔ)法結(jié)構(gòu)的學(xué)習(xí),還包括對(duì)語(yǔ)言的深層次理解,如文化背景、語(yǔ)境含義和情感色彩等。 自監(jiān)督學(xué)習(xí):模型采用自監(jiān)督學(xué)習(xí)策略,在大量無(wú)標(biāo)簽文本數(shù)據(jù)上學(xué)習(xí)
    發(fā)表于 08-02 11:03

    【《大語(yǔ)言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)篇

    章節(jié)最后總結(jié)了機(jī)器學(xué)習(xí)的分類(lèi):有監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)監(jiān)督學(xué)習(xí)、自
    發(fā)表于 07-25 14:33

    神經(jīng)網(wǎng)絡(luò)如何用無(wú)監(jiān)督算法訓(xùn)練

    神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的重要組成部分,其訓(xùn)練方式多樣,其中無(wú)監(jiān)督學(xué)習(xí)是一種重要的訓(xùn)練策略。無(wú)監(jiān)督學(xué)習(xí)旨在從未標(biāo)記的數(shù)據(jù)中發(fā)現(xiàn)數(shù)據(jù)內(nèi)在的結(jié)構(gòu)、模式或規(guī)律,從而提取有用的特征表示。這種訓(xùn)練方式對(duì)于大規(guī)模未
    的頭像 發(fā)表于 07-09 18:06 ?1200次閱讀

    深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)習(xí)方法綜述

    應(yīng)用中往往難以實(shí)現(xiàn)。因此,無(wú)監(jiān)督學(xué)習(xí)在深度學(xué)習(xí)中扮演著越來(lái)越重要的角色。本文旨在綜述深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)習(xí)方法,包括自編碼器、生成對(duì)抗網(wǎng)絡(luò)、聚類(lèi)算法等,并分析它們的原理、應(yīng)用場(chǎng)景以及優(yōu)
    的頭像 發(fā)表于 07-09 10:50 ?1326次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過(guò)讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無(wú)需進(jìn)行明確的編程。本文將深入解讀幾種常見(jiàn)的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1952次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來(lái),數(shù)據(jù)量的爆炸性增長(zhǎng)對(duì)數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過(guò)訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入探討機(jī)器
    的頭像 發(fā)表于 07-02 11:22 ?1091次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1978次閱讀

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.35】如何用「時(shí)間序列與機(jī)器學(xué)習(xí)」解鎖未來(lái)

    設(shè)備的運(yùn)行狀況,生成各種維度的報(bào)告。 同時(shí),通過(guò)大數(shù)據(jù)分析和機(jī)器學(xué)習(xí)技術(shù),可以對(duì)業(yè)務(wù)進(jìn)行預(yù)測(cè)和預(yù)警,從而協(xié)助社會(huì)和企業(yè)進(jìn)行科學(xué)決策、降低成本并創(chuàng)造新的價(jià)值。 當(dāng)今時(shí)代,數(shù)據(jù)無(wú)處不在,而時(shí)間序列數(shù)據(jù)更是
    發(fā)表于 06-25 15:00

    電子發(fā)燒友

    中國(guó)電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會(huì)員交流學(xué)習(xí)
    • 獲取您個(gè)性化的科技前沿技術(shù)信息
    • 參加活動(dòng)獲取豐厚的禮品