鋰離子電池因?yàn)榫哂邪踩阅芎?、比能量大、自放電小等?yōu)點(diǎn),在現(xiàn)代電子產(chǎn)品中廣泛使用。小到智能手表,大到電動(dòng)汽車,處處可見鋰離子電池的蹤影。那我們常說(shuō)的鋰電池和這里的鋰離子電池有什么區(qū)別呢?
鋰電池在大方向上可以包含鋰金屬電池和鋰離子電池兩種。鋰金屬電池一般是使用二氧化錳為正極材料、金屬鋰或其合金金屬為負(fù)極材料的電池,是一次性的。鋰離子電池一般是使用鋰合金金屬氧化物為正極材料、石墨為負(fù)極材料的電池,是可以反復(fù)充電的。
所以我們?cè)谡f(shuō)到特斯拉用了很多鋰電池才可以超過(guò) 400 英里(約 644 公里)續(xù)航的時(shí)候,這里的鋰電池,實(shí)際指的是具體的鋰離子電池。
行業(yè)的發(fā)展,動(dòng)力電池能量密度的提升越來(lái)越受重視,石墨負(fù)極已經(jīng)不能滿足動(dòng)力電池能量密度上的要求。因此,越來(lái)越多的行業(yè)人士,將實(shí)現(xiàn)動(dòng)力電池能量密度突破的希望,寄托到硅碳上來(lái)。
石墨的理論能量密度是372 mAh/g,而硅負(fù)極理論能量密度高達(dá)4200mAh/g,是石墨的十余倍。因此,在石墨材料中加入硅以提升電池能量密度,成為業(yè)界主要的研究方向之一。當(dāng)前,日韓電芯廠商以及比亞迪、力神、比克、萬(wàn)向等國(guó)內(nèi)電池廠商,都在進(jìn)行相關(guān)研發(fā)。
根據(jù)中國(guó)汽車動(dòng)力電池發(fā)展路線的規(guī)劃要求
至2015年動(dòng)力電池模塊的能量密度達(dá)到150Wh/kg(單體在170~190Wh/kg),
至2020年動(dòng)力電池模塊的能量密度達(dá)到250Wh/kg(單體在300Wh/kg以上)
以現(xiàn)有的材料體系已經(jīng)無(wú)法滿足未來(lái)發(fā)展的需求了,所以必須要發(fā)展高能量密度的電極材料。從改善負(fù)極的角度來(lái)看發(fā)展硅基材料體系是個(gè)不錯(cuò)的方向。目前應(yīng)用相對(duì)成熟的Si負(fù)極材料是碳包覆SiO,納米Si@C復(fù)合材料,和Si合金。
由4Si+15Li++15e-Li15Si4
硅負(fù)極的理論容量為3590mAh/g @RT(高溫下Li22Si5容量4200mAh/g)
而石墨負(fù)極:6C+Li++e- LiC6
石墨負(fù)極的理論容量為372mAh/g,對(duì)于容量的提升令人“一顆賽艇”。
硅負(fù)極勢(shì)在必行
對(duì)于鋰電池能量密度的提升,硅負(fù)極是極其重要的一環(huán);硅是目前容量最大的負(fù)材料,最高的鋰硅比為44:1,硅的比容量為4212mAh/g,而石墨的比容量為372mAh/g,硅高出石墨一個(gè)數(shù)量級(jí)。就電池單體達(dá)到300Wh/kg的目標(biāo)而言,使用純石墨負(fù)極在理論上基本不可能達(dá)到。所以,目前的主流電池廠商和主機(jī)廠都把硅負(fù)極當(dāng)作未來(lái)的一個(gè)主要課題。
寶馬的電池材料路線圖
CATL的電池材料路線圖
然而硅負(fù)極也有一些顯著問(wèn)題,例如硅在充放電過(guò)程中會(huì)發(fā)生劇烈的體積收縮,體積的劇烈變化會(huì)導(dǎo)致內(nèi)部機(jī)械機(jī)構(gòu)失效,從而使得硅負(fù)極的循環(huán)壽命難達(dá)預(yù)期,進(jìn)而硅的納米化勢(shì)在必行。
硅基負(fù)極材料主要分為兩大類:
1)晶體硅材料;
2)氧化亞硅材料。
晶體硅材料最大的優(yōu)勢(shì)是容量高,在完全嵌鋰狀態(tài)下晶體硅材料的比容量可達(dá)4200mAh/g(Li4.4Si),達(dá)到石墨材料的10倍以上,甚至要比金屬鋰負(fù)極的容量(3860mAh/g)還要高,但是硅負(fù)極材料也存在嚴(yán)重的體積膨脹問(wèn)題,在完全嵌鋰狀態(tài)下,Si負(fù)極的體積膨脹可達(dá)300%,這不僅僅會(huì)導(dǎo)致Si負(fù)極的顆粒破碎,還會(huì)破壞電極的導(dǎo)電網(wǎng)絡(luò)和粘接劑網(wǎng)絡(luò),導(dǎo)致活性物質(zhì)損失,從而嚴(yán)重影響硅負(fù)極材料的循環(huán)性能,這也成為了阻礙Si負(fù)極材料應(yīng)用最主要的障礙。
解決Si材料體積膨脹大的問(wèn)題的思路主要有三個(gè):
1)納米化,通過(guò)制備納米硅顆粒、納米硅薄膜等手段,抑制Si在充放電過(guò)程中的體積變化;
2)制備特殊形狀的Si晶體材料,例如蜂窩狀材料,樹枝狀的Si材料,利用Si材料自身的形變吸收充放電過(guò)程中的體積變化,改善Si材料的循環(huán)性能;
3)Si/C復(fù)合材料,通過(guò)Si與石墨材料復(fù)合,利用石墨材料緩沖Si材料在循環(huán)過(guò)程中的體積變化,以改善Si材料的循環(huán)性能。
在克服體積膨脹問(wèn)題上,納米化是一種非常有效的方法,納米顆??梢院芎玫臏p少體積膨脹對(duì)材料顆粒和電極造成的破壞,因此針對(duì)Si負(fù)極的研究很多都集中在納米Si材料的制備上。傳統(tǒng)的納米化手段一般都工藝復(fù)雜,且成本高昂,而中南大學(xué)的Xiangyang Zhou等利用天然高嶺土作為原料,通過(guò)選擇性酸腐蝕和鎂熱還原的方法成功制備了納米Si材料。該材料由直徑為20-50nm的顆粒相互連接而成,這種納米顆粒組成的多孔結(jié)構(gòu)使得該材料具有非常優(yōu)良的電化學(xué)性能,在0.2C倍率下循環(huán)100次,可以獲得高達(dá)2200mAh/g 的穩(wěn)定容量,1C循環(huán)1000次,可逆容量達(dá)到800mAh/g以上。但該材料的首次充放電庫(kù)倫效率較低,僅為79.2%,這也是納米材料比表面積大造成的弊病。
海綿材料由于其多孔結(jié)構(gòu),因此具有非常好的彈性,這也為克服Si負(fù)極材料膨脹提供了一條思路——制備多孔結(jié)構(gòu)的Si負(fù)極材料,利用材料內(nèi)的微孔,吸收材料的體積膨脹。浙江大學(xué)的Hao Wu等利用鎂熱還原法制備了具有多孔結(jié)構(gòu)的硅負(fù)極材料,其多孔結(jié)構(gòu)很好的吸收了硅材料在嵌入和脫出的過(guò)程中體積膨脹,因此該材料表現(xiàn)出了非常優(yōu)異的循環(huán)性能,800次循環(huán)后,仍然發(fā)揮1058mAh/g的容量,容量保持率達(dá)到91%。
為了解決硅負(fù)極材料膨脹大、導(dǎo)電性差的問(wèn)題,可以將納米顆粒的晶體硅材料分散在石墨材料之中,利用石墨材料吸收硅負(fù)極材料在充放電過(guò)程中的體積變化。中南大學(xué)的Yong Yang等利用噴霧干燥法制備了硅、石墨、碳納米管和瀝青的復(fù)合Si負(fù)極材料,研究發(fā)現(xiàn)通過(guò)向材料中添加11.5%含量的瀝青顯著改善了材料的電化學(xué)性能,在100mA/g的電流密度下可逆容量達(dá)到863.2mAh/g,循環(huán)100次容量保持率可達(dá)81.3%,并表現(xiàn)出了良好的循環(huán)性能。
氧化亞硅
為了解決晶體硅材料在充放電過(guò)程中的體積膨脹大的問(wèn)題,折中的解決辦法就是制備氧化亞硅SiOx材料。相比于晶體硅材料,氧化亞硅材料在嵌鋰過(guò)程中的體積膨脹大大減小,因此循環(huán)性能也得到了極大的提升,但是氧化亞硅也存在著致命的問(wèn)題——首次效率低,由于氧化亞硅材料在嵌鋰的過(guò)程中會(huì)生成Li2O和Li4SiO4非活性產(chǎn)物,從而導(dǎo)致部分Li失去活性,因此SiOx材料的首次效率一般僅為70%左右。SiOx材料的可逆容量為1500mAh/g左右,要遠(yuǎn)高于石墨類材料,因此在目前晶體硅材料制備技術(shù)和材料性能沒有大的突破的背景下,各大材料廠家紛紛轉(zhuǎn)而開始研究循環(huán)性能更好的SiOx材料,目前市場(chǎng)上的硅負(fù)極材料也大部分都是氧化亞硅材料。
SiOx材料體積膨脹要遠(yuǎn)小于晶體硅材料,但是其膨脹水平仍然要遠(yuǎn)高于石墨類材料,因此SiOx材料的研制工作仍然要著重考慮體積膨脹問(wèn)題,減少在循環(huán)過(guò)程中材料的顆粒破碎和粉化,提高材料的循環(huán)壽命。因此納米化也是SiOx材料常用的方法,日本松下公司的Hideharu Takezawa等[4]利用反應(yīng)蒸發(fā)工藝在銅箔的表面制備了一層薄膜SiOx材料,并通過(guò)控制反應(yīng)條件調(diào)整SiOx中x的值(0.17,0.68和1.02),發(fā)現(xiàn)SiOx材料中的O的含量對(duì)與其循環(huán)性能有這重要的影響。O含量高會(huì)導(dǎo)致在反應(yīng)中產(chǎn)生較多的非活性物質(zhì),但也會(huì)顯著的提高材料的循環(huán)性能,例如SiO1.02材料循環(huán)30次容量保持率可達(dá)98%,而O含量低的材料,雖然循環(huán)過(guò)程中產(chǎn)生的非活性物質(zhì)比較少,但是由于體積膨脹比較大,導(dǎo)致循環(huán)性能很差。同時(shí)研究還發(fā)現(xiàn)材料的首次效率也隨著O含量的增加而迅速降低(SiO0.17為94%,而SiO1.02的首次效率僅為53.7%),該材料通過(guò)犧牲部分性能獲取了更好的循環(huán)性能。
通過(guò)氧化亞硅先實(shí)現(xiàn)商業(yè)化
而一些其他企業(yè)為了提早實(shí)現(xiàn)商業(yè)化,氧化亞硅是目前介于石墨和硅之間的一個(gè)過(guò)渡方案,相比較硅,雖然容量密度要低,其膨脹率為2.2,較Si的4倍要低很多。
ATTACCATO研究多種粘結(jié)劑提升Si負(fù)極壽命
日本的ATTACCATO是大阪產(chǎn)業(yè)技術(shù)綜合研究所下屬的投資企業(yè)。該公司的材料提高了粘結(jié)劑強(qiáng)度,從而更好地抑制由于Si的收縮膨脹引起的電極劣化。通過(guò)這種玻璃系無(wú)機(jī)材料,使得應(yīng)用現(xiàn)有的面向石墨系負(fù)極材料的粘結(jié)劑的條件下,實(shí)現(xiàn)了Si負(fù)極。使得材料覆蓋在粘合劑,活性物質(zhì)與集電體上,形成剛性骨架,使得即使Si的體積變化,電極結(jié)構(gòu)也不會(huì)發(fā)生破壞。在SiO材料中適用的情況,至少可以承受300次充放電周期。
而在1994年收購(gòu)了購(gòu)美國(guó)杜邦的聚酰亞胺業(yè)務(wù)的I.S.T,通過(guò)在負(fù)極中混合聚酰亞胺材料,有效抑制由于Si的膨脹收縮而導(dǎo)致的電極劣化。該公司的這一研究已經(jīng)持續(xù)了將近10年時(shí)間。該公司通過(guò)實(shí)驗(yàn)驗(yàn)證基于SiO負(fù)極材料的開發(fā)品可以實(shí)現(xiàn)400次循環(huán)壽命,與現(xiàn)有鋰電池基本達(dá)到差不多的水平。I.S.T后續(xù)的目標(biāo)是在具有高膨脹系數(shù)的Si負(fù)極中盡快實(shí)現(xiàn)實(shí)用化。預(yù)計(jì)可以通過(guò)采用高強(qiáng)度的聚酰亞胺等方法來(lái)實(shí)現(xiàn)。
IST利用SiO制備的電池已經(jīng)可以實(shí)現(xiàn)400次以上的循環(huán)壽命
除了電池制造商之外,I.S.T還計(jì)劃向新加入電池制造行業(yè)的企業(yè)提供這一技術(shù),藉此實(shí)現(xiàn)量產(chǎn)化。當(dāng)然首先的計(jì)劃是在2020年前實(shí)現(xiàn)SiO應(yīng)用產(chǎn)品的大規(guī)模量產(chǎn)化。
LG化學(xué)、三星、信越、村田、豐田、三菱、日立化成等日韓巨頭是主要的硅基負(fù)極材料技術(shù)專利申請(qǐng)單位。全球申請(qǐng)數(shù)排名前25的單位中,我國(guó)僅有寧德時(shí)代和國(guó)軒高科入圍;寧德時(shí)代、國(guó)軒高科、華為、中南大學(xué)、貝特瑞躋身全球申請(qǐng)數(shù)前50。松下為特斯拉提供的圓柱21700電池是硅碳負(fù)極在動(dòng)力電池-新能源汽車領(lǐng)域應(yīng)用的成功案例;我國(guó)企業(yè)貝特瑞、璞泰來(lái)(紫宸)、等不同程度進(jìn)行布局,產(chǎn)品性能相比石墨在比容量方面有優(yōu)勢(shì)。
我們估計(jì),至2025年,硅碳負(fù)極性能相比于現(xiàn)在將有顯著提升。
在硅基負(fù)極的產(chǎn)業(yè)化上,寧德時(shí)代獲得了行業(yè)性的突破,其摒棄了傳統(tǒng)碳包覆技術(shù),轉(zhuǎn)向研究人造電解質(zhì)界面膜包覆技術(shù)。
寧德時(shí)代首席科學(xué)家吳凱此前介紹,其歷時(shí)2年多,將這一技術(shù)應(yīng)用到硅材料制備,開發(fā)出具有自主知識(shí)產(chǎn)權(quán)的新型人造電解質(zhì)界面膜包覆的硅碳復(fù)合負(fù)極材料,其循環(huán)性能表現(xiàn)顯著優(yōu)于國(guó)外產(chǎn)品。
與碳材料相比,人造電解質(zhì)界面膜與硅材料的結(jié)合作用力更強(qiáng)、彈性更好、不易破碎或粉化,對(duì)硅材料起到很好的保護(hù)作用,因此能夠在循環(huán)中大幅提高硅材料的界面穩(wěn)定性,從而提升電池的循環(huán)壽命。
此外,在國(guó)內(nèi),包括貝特瑞、璞泰來(lái)、星城石墨、斯諾、杉杉、正拓等也都在積極推進(jìn)硅碳負(fù)極的產(chǎn)業(yè)化。
貝特瑞也已經(jīng)占據(jù)技術(shù)高地:目前具備硅碳和硅氧兩種負(fù)極材料技術(shù)。貝特瑞生產(chǎn)的硅碳負(fù)極材料能有效避免硅與電解液直接接觸,減少副反應(yīng),所設(shè)計(jì)的結(jié)構(gòu)可以有效緩解硅的體積膨脹。采用硅碳負(fù)極材料的鋰離子電池產(chǎn)品具備高容量、高功率和長(zhǎng)循環(huán)壽命等特點(diǎn)。目前,貝特瑞的硅碳負(fù)極材料已經(jīng)突破至第三代產(chǎn)品,比容量從第一代的650mAh/g提升至第三代的1,500mAh/g,且正在開發(fā)更高容量的第四代硅碳負(fù)極材料產(chǎn)品。
責(zé)任編輯:xj
原文標(biāo)題:硅納米材料--助力鋰電池硅碳負(fù)極產(chǎn)業(yè)化
文章出處:【微信公眾號(hào):鋰電聯(lián)盟會(huì)長(zhǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
-
鋰電池
+關(guān)注
關(guān)注
260文章
8140瀏覽量
170678 -
納米
+關(guān)注
關(guān)注
2文章
697瀏覽量
37035 -
硅碳負(fù)極
+關(guān)注
關(guān)注
0文章
10瀏覽量
5682
原文標(biāo)題:硅納米材料--助力鋰電池硅碳負(fù)極產(chǎn)業(yè)化
文章出處:【微信號(hào):Recycle-Li-Battery,微信公眾號(hào):鋰電聯(lián)盟會(huì)長(zhǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論