前言
2020年初的新冠疫情在金融領(lǐng)域“催生”的“零接觸式服務(wù)”進(jìn)一步推動了金融科技的應(yīng)用與落地。在后疫情時(shí)代,隨著5G,大數(shù)據(jù),云計(jì)算,人工智能,區(qū)塊鏈等新興技術(shù)與金融業(yè)務(wù)的不斷結(jié)合,金融行業(yè)的數(shù)字化大“變身”也在不斷蓄力。
近年來,AI在金融服務(wù)賦能和業(yè)務(wù)模式變革方面全面發(fā)力,從“千人千面”的智能營銷到虛擬員工的智能客服,從“火眼金睛”的智能風(fēng)控到無處不在的智能運(yùn)營,AI都在為金融行業(yè)的科技之路保駕護(hù)航。
人工智能平臺中的AI
實(shí)現(xiàn)規(guī)模應(yīng)用的“哆啦A夢”
在人工智能平臺前,金融行業(yè)特別是銀行中的建模大都還是SAS、SPSS等統(tǒng)計(jì)建模軟件的天下,雖然它們在評分卡等領(lǐng)域曾經(jīng)輝煌過,但在大數(shù)據(jù)時(shí)代的長河里,它們漸漸失去了往日的光芒。
這時(shí),具有大數(shù)據(jù)基因,且整合了大數(shù)據(jù)機(jī)器學(xué)習(xí)框架以及多種計(jì)算機(jī)語言的人工智能平臺應(yīng)運(yùn)而生。其不僅利用分布式計(jì)算部署能力和容器技術(shù)讓計(jì)算能力和速度進(jìn)一步提升,而且還降低了建模計(jì)算的使用門檻,讓前線的業(yè)務(wù)人員也能體驗(yàn)小白上手大數(shù)據(jù)建模的快感,同時(shí)也能讓建模與業(yè)務(wù)場景結(jié)合地更緊密,讓建模結(jié)果更好地賦能業(yè)務(wù)。
AI讓數(shù)字金融向智慧金融“進(jìn)化”
更加精細(xì)化的客戶管理:
將集中于客戶關(guān)系管理系統(tǒng)中的人口屬性數(shù)據(jù)、集中于交易系統(tǒng),產(chǎn)品系統(tǒng)以及客戶關(guān)系管理系統(tǒng)中的信用屬性數(shù)據(jù)、集中于渠道和產(chǎn)品系統(tǒng)中的消費(fèi)特征數(shù)據(jù)、來自運(yùn)營商,電商等外部廠商的興趣愛好和社交信息數(shù)據(jù),都導(dǎo)入至數(shù)據(jù)市場中
立足于實(shí)際業(yè)務(wù)場景需求找到強(qiáng)相關(guān)數(shù)據(jù)
利用邏輯回歸、支持向量機(jī)、決策樹、K-Means等分類、聚類算法對客戶進(jìn)行等級/種類劃分,并基于數(shù)據(jù)統(tǒng)計(jì)/規(guī)則定義/算法挖掘建立完整的用戶標(biāo)簽體系
將客戶群體切割成更細(xì)的粒度
(eg:將客戶精分為獲取期、提升期、成熟期、衰退期和退化期,從而可以挖掘找到高價(jià)值客戶)
經(jīng)典的客戶生命周期理論
更加個(gè)性化的產(chǎn)品營銷:
將產(chǎn)品系統(tǒng)中的各大理財(cái)產(chǎn)品基本信息、投資組合、公告信息和財(cái)務(wù)報(bào)表相關(guān)數(shù)據(jù)導(dǎo)入至平臺中
進(jìn)行精細(xì)化產(chǎn)品畫像構(gòu)建
產(chǎn)品推薦系統(tǒng)架構(gòu)圖
(eg:通過對潛力客戶的用戶畫像特征變量進(jìn)行分析,預(yù)測其進(jìn)一步升級成為優(yōu)質(zhì)客戶的可能性,對可能性高的客戶進(jìn)行產(chǎn)品精準(zhǔn)營銷,從而能夠提升營銷的針對性和成功率)
默默陪伴不騷擾的個(gè)性化數(shù)字金融產(chǎn)品,當(dāng)客戶需要時(shí)又能在第一時(shí)刻出現(xiàn),AI將產(chǎn)品營銷做到極致!
更加全面化的風(fēng)險(xiǎn)管控:
風(fēng)險(xiǎn)管控貫穿于金融業(yè)務(wù)貸前、貸中和貸后的整個(gè)生命周期中。
貸前-貸中-貸后風(fēng)控流程模型,來源:艾瑞咨詢研究院
貸前客戶準(zhǔn)入風(fēng)險(xiǎn)審核:
1)根據(jù)央行征信數(shù)據(jù)以及用戶提交的相關(guān)材料進(jìn)行身份核實(shí),確保用戶不存在欺詐歷史;
2)結(jié)合用戶的社交數(shù)據(jù)、行為數(shù)據(jù)、收入數(shù)據(jù)等個(gè)人屬性信息,利用隨機(jī)森林等分類算法對用戶的信用風(fēng)險(xiǎn)等級進(jìn)行判定,預(yù)測用戶未來的履約能力;
3)利用用戶的收入及負(fù)債相關(guān)數(shù)據(jù)了解用戶的負(fù)債能力和收入穩(wěn)定性,并結(jié)合信用等級評分?jǐn)?shù)據(jù),應(yīng)用廣義線性模型和主流貸款定價(jià)方法確定放款額度、月供金額和償還期限
貸中客戶行為實(shí)時(shí)監(jiān)管:
1)粗粒度的用戶層欺詐識別:根據(jù)金融平臺上對用戶交易行為的限制,及用戶實(shí)際發(fā)生的交易行為進(jìn)行對比,應(yīng)用邏輯回歸等算法判定用戶是否屬于欺詐用戶;
2)細(xì)粒度的交易層欺詐識別:利用交易上下文、交易行為發(fā)生IP、設(shè)備、地域的相關(guān)數(shù)據(jù),結(jié)合邏輯回歸算法以及圖計(jì)算算法和知識圖譜判定交易行為的欺詐性,從而挖掘出相關(guān)欺詐用戶
貸后對公客戶違約預(yù)測:
構(gòu)建交易知識圖譜、供應(yīng)鏈知識圖譜以及企業(yè)知識圖譜,利用復(fù)雜網(wǎng)絡(luò)挖掘擔(dān)保網(wǎng)絡(luò)中的風(fēng)險(xiǎn)信息,再對挖掘出來的相關(guān)風(fēng)險(xiǎn)特征進(jìn)行建模,從而能夠更好地對某一筆借據(jù)的違約風(fēng)險(xiǎn)和逾期傾向進(jìn)行預(yù)測,并對逾期概率大的借據(jù)進(jìn)行特別關(guān)注和預(yù)警。
即使AI算法只能解決可控風(fēng)險(xiǎn),但AI仍努力讓風(fēng)控落到實(shí)處。
“哆啦A夢的神奇口袋”里不僅有多種數(shù)據(jù)源對接工具,還有標(biāo)準(zhǔn)化的AI服務(wù)模塊和通用組件,其提供的快速復(fù)制及靈活研發(fā)能力讓AI在金融行業(yè)得到規(guī)?;瘧?yīng)用,在各個(gè)業(yè)務(wù)場景遍地開花。
同時(shí)針對數(shù)據(jù)孤島困境、數(shù)據(jù)隱私保護(hù)的限制以及數(shù)據(jù)單一導(dǎo)致的算法模型精度問題,“口袋”中的聯(lián)邦學(xué)習(xí)模塊都能完美解決。它能讓各金融機(jī)構(gòu)之間以及金融機(jī)構(gòu)和其他行業(yè)機(jī)構(gòu)間在保護(hù)原始數(shù)據(jù)隱私安全的情況下進(jìn)行聯(lián)合機(jī)器學(xué)習(xí)建模,既能滿足金融業(yè)務(wù)需求,又能保障合規(guī)要求。
金融科技的賽道中,AI在全力奔跑。想知道知識圖譜是如何成為AI屆的“孫悟空”,利用其“火眼金睛”全面把控金融風(fēng)險(xiǎn)的嗎?
責(zé)任編輯:YYX
-
AI
+關(guān)注
關(guān)注
87文章
30887瀏覽量
269062 -
人工智能
+關(guān)注
關(guān)注
1791文章
47274瀏覽量
238464
發(fā)布評論請先 登錄
相關(guān)推薦
評論