0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

計算機(jī)視覺CV領(lǐng)域圖像分類方向文獻(xiàn)和代碼的超全總結(jié)和列表!

新機(jī)器視覺 ? 來源:新機(jī)器視覺 ? 作者:新機(jī)器視覺 ? 2020-11-03 10:08 ? 次閱讀

今天給大家介紹自 2014 年以來,計算機(jī)視覺 CV 領(lǐng)域圖像分類方向文獻(xiàn)和代碼的超全總結(jié)和列表!總共涉及 36 種 ConvNet 模型。該 GitHub 項目作者是 weiaicunzai,項目地址是:

https://github.com/weiaicunzai/awesome-image-classification

背景

我相信圖像識別是深入到其它機(jī)器視覺領(lǐng)域一個很好的起點(diǎn),特別是對于剛剛?cè)腴T深度學(xué)習(xí)的人來說。當(dāng)我初學(xué) CV 時,犯了很多錯。我當(dāng)時非常希望有人能告訴我應(yīng)該從哪一篇論文開始讀起。到目前為止,似乎還沒有一個像 deep-learning-object-detection 這樣的 GitHub 項目。因此,我決定建立一個 GitHub 項目,列出深入學(xué)習(xí)中關(guān)于圖像分類的論文和代碼,以幫助其他人。

對于學(xué)習(xí)路線,我的個人建議是,對于那些剛?cè)腴T深度學(xué)習(xí)的人,可以試著從 vgg 開始,然后是 googlenet、resnet,之后可以自由地繼續(xù)閱讀列出的其它論文或切換到其它領(lǐng)域。

性能表

基于簡化的目的,我只從論文中列舉出在 ImageNet 上準(zhǔn)確率最高的 top1 和 top5。注意,這并不一定意味著準(zhǔn)確率越高,一個網(wǎng)絡(luò)就比另一個網(wǎng)絡(luò)更好。因為有些網(wǎng)絡(luò)專注于降低模型復(fù)雜性而不是提高準(zhǔn)確性,或者有些論文只給出 ImageNet 上的 single crop results,而另一些則給出模型融合或 multicrop results。

關(guān)于性能表的標(biāo)注:

ConvNet:卷積神經(jīng)網(wǎng)絡(luò)的名稱

ImageNet top1 acc:論文中基于 ImageNet 數(shù)據(jù)集最好的 top1 準(zhǔn)確率

ImageNet top5 acc:論文中基于 ImageNet 數(shù)據(jù)集最好的 top5 準(zhǔn)確率

Published In:論文發(fā)表在哪個會議或期刊

論文&代碼

1. VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition.

Karen Simonyan, Andrew Zisserman

pdf: https://arxiv.org/abs/1409.1556

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

2. GoogleNet

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

pdf:https://arxiv.org/abs/1409.4842

code: unofficial-tensorflow :

https://github.com/conan7882/GoogLeNet-Inception

code: unofficial-caffe :

https://github.com/lim0606/caffe-googlenet-bn

3.PReLU-nets

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1502.01852

code: unofficial-chainer :

https://github.com/nutszebra/prelu_net

4.ResNet

Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1512.03385

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet.py

code: unofficial-keras :

https://github.com/raghakot/keras-resnet

code: unofficial-tensorflow :

https://github.com/ry/tensorflow-resnet

5.PreActResNet

Identity Mappings in Deep Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1603.05027

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua

code: official :

https://github.com/KaimingHe/resnet-1k-layers

code: unoffical-pytorch :

https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py

code: unoffical-mxnet :

https://github.com/tornadomeet/ResNet

6.Inceptionv3

Rethinking the Inception Architecture for Computer Vision

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

pdf:https://arxiv.org/abs/1512.00567

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py

7.Inceptionv4 && Inception-ResNetv2

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi

pdf:https://arxiv.org/abs/1602.07261

code: unofficial-keras :

https://github.com/kentsommer/keras-inceptionV4

code: unofficial-keras :

https://github.com/titu1994/Inception-v4

code: unofficial-keras :

https://github.com/yuyang-huang/keras-inception-resnet-v2

8. RIR

Resnet in Resnet: Generalizing Residual Architectures

Sasha Targ, Diogo Almeida, Kevin Lyman

pdf:https://arxiv.org/abs/1603.08029

code: unofficial-tensorflow :

https://github.com/SunnerLi/RiR-Tensorflow

code: unofficial-chainer :

https://github.com/nutszebra/resnet_in_resnet

9.Stochastic Depth ResNet

Deep Networks with Stochastic Depth

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger

pdf:https://arxiv.org/abs/1603.09382

code: unofficial-torch :

https://github.com/yueatsprograms/Stochastic_Depth

code: unofficial-chainer :

https://github.com/yasunorikudo/chainer-ResDrop

code: unofficial-keras :

https://github.com/dblN/stochastic_depth_keras

10.WRN

Wide Residual Networks

Sergey Zagoruyko, Nikos Komodakis

pdf:https://arxiv.org/abs/1605.07146

code: official :

https://github.com/szagoruyko/wide-residual-networks

code: unofficial-pytorch :

https://github.com/xternalz/WideResNet-pytorch

code: unofficial-keras :

https://github.com/asmith26/wide_resnets_keras

code: unofficial-pytorch :

https://github.com/meliketoy/wide-resnet.pytorch

11.squeezenet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size?

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

pdf:https://arxiv.org/abs/1602.07360

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py

code: unofficial-caffe :

https://github.com/DeepScale/SqueezeNet

code: unofficial-keras :

https://github.com/rcmalli/keras-squeezenet

code: unofficial-caffe :

https://github.com/songhan/SqueezeNet-Residual

12.GeNet

Genetic CNN

Lingxi Xie, Alan Yuille

pdf:https://arxiv.org/abs/1703.01513

code: unofficial-tensorflow :

https://github.com/aqibsaeed/Genetic-CNN

12.MetaQNN

Designing Neural Network Architectures using Reinforcement Learning

Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

pdf:https://arxiv.org/abs/1703.01513

code: official :https://github.com/bowenbaker/metaqnn

13.PyramidNet

Deep Pyramidal Residual Networks

Dongyoon Han, Jiwhan Kim, Junmo Kim

pdf:https://arxiv.org/abs/1610.02915

code: official :

https://github.com/jhkim89/PyramidNet

code: unofficial-pytorch :

https://github.com/dyhan0920/PyramidNet-PyTorch

14.DenseNet

Densely Connected Convolutional Networks

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1608.06993

code: official :

https://github.com/liuzhuang13/DenseNet

code: unofficial-keras :

https://github.com/titu1994/DenseNet

code: unofficial-caffe :

https://github.com/shicai/DenseNet-Caffe

code: unofficial-tensorflow :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/bamos/densenet.pytorch

code: unofficial-keras :

https://github.com/flyyufelix/DenseNet-Keras

15.FractalNet

FractalNet: Ultra-Deep Neural Networks without Residuals

Gustav Larsson, Michael Maire, Gregory Shakhnarovich

pdf:https://arxiv.org/abs/1605.07648

code: unofficial-caffe :

https://github.com/gustavla/fractalnet

code: unofficial-keras :

https://github.com/snf/keras-fractalnet

code: unofficial-tensorflow :

https://github.com/tensorpro/FractalNet

16.ResNext

Aggregated Residual Transformations for Deep Neural Networks

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He

pdf:https://arxiv.org/abs/1611.05431

code: official :

https://github.com/facebookresearch/ResNeXt

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnext.py

code: unofficial-pytorch :

https://github.com/prlz77/ResNeXt.pytorch

code: unofficial-keras :

https://github.com/titu1994/Keras-ResNeXt

code: unofficial-tensorflow :

https://github.com/taki0112/ResNeXt-Tensorflow

code: unofficial-tensorflow :

https://github.com/wenxinxu/ResNeXt-in-tensorflow

17.IGCV1

Interleaved Group Convolutions for Deep Neural Networks

Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang

pdf:https://arxiv.org/abs/1707.02725

code official :

https://github.com/hellozting/InterleavedGroupConvolutions

18.Residual Attention Network

Residual Attention Network for Image Classification

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang

pdf:https://arxiv.org/abs/1704.06904

code: official :

https://github.com/fwang91/residual-attention-network

code: unofficial-pytorch :

https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch

code: unofficial-gluon :

https://github.com/PistonY/ResidualAttentionNetwork

code: unofficial-keras :

https://github.com/koichiro11/residual-attention-network

19.Xception

Xception: Deep Learning with Depthwise Separable Convolutions

Fran?ois Chollet

pdf:https://arxiv.org/abs/1610.02357

code: unofficial-pytorch :

https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py

code: unofficial-tensorflow :

https://github.com/kwotsin/TensorFlow-Xception

code: unofficial-caffe :

https://github.com/yihui-he/Xception-caffe

code: unofficial-pytorch :

https://github.com/tstandley/Xception-PyTorch

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py

20.MobileNet

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

pdf:https://arxiv.org/abs/1704.04861

code: unofficial-tensorflow :

https://github.com/Zehaos/MobileNet

code: unofficial-caffe :

https://github.com/shicai/MobileNet-Caffe

code: unofficial-pytorch :

https://github.com/marvis/pytorch-mobilenet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py

21.PolyNet

PolyNet: A Pursuit of Structural Diversity in Very Deep Networks

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin

pdf:https://arxiv.org/abs/1611.05725

code: official :

https://github.com/open-mmlab/polynet

22.DPN

Dual Path Networks

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

pdf:https://arxiv.org/abs/1707.01629

code: official :

https://github.com/cypw/DPNs

code: unoffical-keras :

https://github.com/titu1994/Keras-DualPathNetworks

code: unofficial-pytorch :

https://github.com/oyam/pytorch-DPNs

code: unofficial-pytorch :

https://github.com/rwightman/pytorch-dpn-pretrained

23.Block-QNN

Practical Block-wise Neural Network Architecture Generation

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu

pdf:https://arxiv.org/abs/1708.05552

24.CRU-Net

Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks

Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng

pdf:https://arxiv.org/abs/1703.02180

code official :

https://github.com/cypw/CRU-Net

code unofficial-mxnet :

https://github.com/bruinxiong/Modified-CRUNet-and-Residual-Attention-Network.mxnet

25.ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

pdf:https://arxiv.org/abs/1707.01083

code: unofficial-tensorflow :

https://github.com/MG2033/ShuffleNet

code: unofficial-pytorch :

https://github.com/jaxony/ShuffleNet

code: unofficial-caffe :

https://github.com/farmingyard/ShuffleNet

code: unofficial-keras :

https://github.com/scheckmedia/keras-shufflenet

26.CondenseNet

CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1711.09224

code: official :

https://github.com/ShichenLiu/CondenseNet

code: unofficial-tensorflow :

https://github.com/markdtw/condensenet-tensorflow

27.NasNet

Learning Transferable Architectures for Scalable Image Recognition

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le

pdf:https://arxiv.org/abs/1707.07012

code: unofficial-keras :

https://github.com/titu1994/Keras-NASNet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/nasnet.py

code: unofficial-pytorch :

https://github.com/wandering007/nasnet-pytorch

code: unofficial-tensorflow :

https://github.com/yeephycho/nasnet-tensorflow

28.MobileNetV2

MobileNetV2: Inverted Residuals and Linear Bottlenecks

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

pdf:https://arxiv.org/abs/1801.04381

code: unofficial-keras :

https://github.com/xiaochus/MobileNetV2

code: unofficial-pytorch :

https://github.com/Randl/MobileNetV2-pytorch

code: unofficial-tensorflow :

https://github.com/neuleaf/MobileNetV2

29.IGCV2

IGCV2: Interleaved Structured Sparse Convolutional Neural Networks

Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi

pdf:https://arxiv.org/abs/1804.06202

30.hier

Hierarchical Representations for Efficient Architecture Search

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu

pdf:https://arxiv.org/abs/1711.00436

31.PNasNet

Progressive Neural Architecture Search

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy

pdf:https://arxiv.org/abs/1712.00559

code: tensorflow-slim :

https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py

code: unofficial-pytorch :

https://github.com/chenxi116/PNASNet.pytorch

code: unofficial-tensorflow :

https://github.com/chenxi116/PNASNet.TF

32.AmoebaNet

Regularized Evolution for Image Classifier Architecture Search

Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le

pdf:https://arxiv.org/abs/1802.01548

code: tensorflow-tpu :

https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net

33.SENet

Squeeze-and-Excitation Networks

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu

pdf:https://arxiv.org/abs/1709.01507

code: official :

https://github.com/hujie-frank/SENet

code: unofficial-pytorch :

https://github.com/moskomule/senet.pytorch

code: unofficial-tensorflow :

https://github.com/taki0112/SENet-Tensorflow

code: unofficial-caffe :

https://github.com/shicai/SENet-Caffe

code: unofficial-mxnet :

https://github.com/bruinxiong/SENet.mxnet

34.ShuffleNetV2

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun

pdf:https://arxiv.org/abs/1807.11164

code: unofficial-pytorch :

https://github.com/Randl/ShuffleNetV2-pytorch

code: unofficial-keras :

https://github.com/opconty/keras-shufflenetV2

code: unofficial-pytorch :

https://github.com/Bugdragon/ShuffleNet_v2_PyTorch

code: unofficial-caff2:

https://github.com/wolegechu/ShuffleNetV2.Caffe2

35.IGCV3

IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks

Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang

pdf:https://arxiv.org/abs/1806.00178

code: official :

https://github.com/homles11/IGCV3

code: unofficial-pytorch :

https://github.com/xxradon/IGCV3-pytorch

code: unofficial-tensorflow :

https://github.com/ZHANG-SHI-CHANG/IGCV3

36.MNasNet

MnasNet: Platform-Aware Neural Architecture Search for Mobile

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le

pdf:https://arxiv.org/abs/1807.11626

code: unofficial-pytorch :

https://github.com/AnjieZheng/MnasNet-PyTorch

code: unofficial-caffe :

https://github.com/LiJianfei06/MnasNet-caffe

code: unofficial-MxNet :

https://github.com/chinakook/Mnasnet.MXNet

code: unofficial-keras :

https://github.com/Shathe/MNasNet-Keras-Tensorflow

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • CV
    CV
    +關(guān)注

    關(guān)注

    0

    文章

    53

    瀏覽量

    16885
  • 圖像分類
    +關(guān)注

    關(guān)注

    0

    文章

    93

    瀏覽量

    11944
  • 計算機(jī)視覺
    +關(guān)注

    關(guān)注

    8

    文章

    1700

    瀏覽量

    46067

原文標(biāo)題:?CV 圖像分類常見的 36 個模型匯總!附完整論文和代碼

文章出處:【微信號:vision263com,微信公眾號:新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    計算機(jī)視覺有哪些優(yōu)缺點(diǎn)

    計算機(jī)視覺作為人工智能領(lǐng)域的一個重要分支,旨在使計算機(jī)能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動了多個行業(yè)的變革,也
    的頭像 發(fā)表于 08-14 09:49 ?1091次閱讀

    計算機(jī)視覺中的圖像融合

    在許多計算機(jī)視覺應(yīng)用中(例如機(jī)器人運(yùn)動和醫(yī)學(xué)成像),需要將多個圖像的相關(guān)信息整合到單一圖像中。這種圖像融合可以提供更高的可靠性、準(zhǔn)確性和數(shù)據(jù)
    的頭像 發(fā)表于 08-01 08:28 ?759次閱讀
    <b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b>中的<b class='flag-5'>圖像</b>融合

    機(jī)器視覺計算機(jī)視覺有什么區(qū)別

    機(jī)器視覺計算機(jī)視覺是兩個密切相關(guān)但又有所區(qū)別的概念。 一、定義 機(jī)器視覺 機(jī)器視覺,又稱為計算機(jī)
    的頭像 發(fā)表于 07-16 10:23 ?588次閱讀

    計算機(jī)視覺的五大技術(shù)

    計算機(jī)視覺作為深度學(xué)習(xí)領(lǐng)域最熱門的研究方向之一,其技術(shù)涵蓋了多個方面,為人工智能的發(fā)展開拓了廣闊的道路。以下是對計算機(jī)
    的頭像 發(fā)表于 07-10 18:26 ?1505次閱讀

    計算機(jī)視覺的工作原理和應(yīng)用

    計算機(jī)視覺(Computer Vision,簡稱CV)是一門跨學(xué)科的研究領(lǐng)域,它利用計算機(jī)和數(shù)學(xué)算法來模擬人類
    的頭像 發(fā)表于 07-10 18:24 ?2229次閱讀

    計算機(jī)視覺與人工智能的關(guān)系是什么

    引言 計算機(jī)視覺是一門研究如何使計算機(jī)能夠理解和解釋視覺信息的學(xué)科。它涉及到圖像處理、模式識別、機(jī)器學(xué)習(xí)等多個
    的頭像 發(fā)表于 07-09 09:25 ?721次閱讀

    計算機(jī)視覺和機(jī)器視覺區(qū)別在哪

    計算機(jī)視覺和機(jī)器視覺是兩個密切相關(guān)但又有明顯區(qū)別的領(lǐng)域。 一、定義 計算機(jī)視覺
    的頭像 發(fā)表于 07-09 09:22 ?502次閱讀

    計算機(jī)視覺圖像處理的區(qū)別和聯(lián)系

    計算機(jī)視覺圖像處理是兩個密切相關(guān)但又有明顯區(qū)別的領(lǐng)域。 1. 基本概念 1.1 計算機(jī)視覺
    的頭像 發(fā)表于 07-09 09:16 ?1404次閱讀

    計算機(jī)視覺在人工智能領(lǐng)域有哪些主要應(yīng)用?

    計算機(jī)視覺是人工智能領(lǐng)域的一個重要分支,它主要研究如何讓計算機(jī)能夠像人類一樣理解和處理圖像和視頻數(shù)據(jù)。
    的頭像 發(fā)表于 07-09 09:14 ?1552次閱讀

    計算機(jī)視覺屬于人工智能嗎

    屬于,計算機(jī)視覺是人工智能領(lǐng)域的一個重要分支。 引言 計算機(jī)視覺是一門研究如何使計算機(jī)具有
    的頭像 發(fā)表于 07-09 09:11 ?1378次閱讀

    計算機(jī)視覺怎么給圖像分類

    圖像分類計算機(jī)視覺領(lǐng)域中的一項核心任務(wù),其目標(biāo)是將輸入的圖像自動分配到預(yù)定義的類別集合中。這一
    的頭像 發(fā)表于 07-08 17:06 ?860次閱讀

    深度學(xué)習(xí)在計算機(jī)視覺領(lǐng)域的應(yīng)用

    深度學(xué)習(xí)技術(shù)的引入,極大地推動了計算機(jī)視覺領(lǐng)域的發(fā)展,使其能夠處理更加復(fù)雜和多樣化的視覺任務(wù)。本文將詳細(xì)介紹深度學(xué)習(xí)在計算機(jī)
    的頭像 發(fā)表于 07-01 11:38 ?902次閱讀

    機(jī)器視覺計算機(jī)視覺的區(qū)別

    在人工智能和自動化技術(shù)的快速發(fā)展中,機(jī)器視覺(Machine Vision, MV)和計算機(jī)視覺(Computer Vision, CV)作為兩個重要的分支
    的頭像 發(fā)表于 06-06 17:24 ?1391次閱讀

    計算機(jī)視覺的主要研究方向

    計算機(jī)視覺(Computer Vision, CV)作為人工智能領(lǐng)域的一個重要分支,致力于使計算機(jī)能夠像人眼一樣理解和解釋
    的頭像 發(fā)表于 06-06 17:17 ?1077次閱讀

    計算機(jī)視覺的十大算法

    隨著科技的不斷發(fā)展,計算機(jī)視覺領(lǐng)域也取得了長足的進(jìn)步。本文將介紹計算機(jī)視覺領(lǐng)域的十大算法,包括它
    的頭像 發(fā)表于 02-19 13:26 ?1306次閱讀
    <b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b>的十大算法