0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

自監(jiān)督學(xué)習(xí)與Transformer相關(guān)論文

深度學(xué)習(xí)自然語言處理 ? 來源:深度學(xué)習(xí)自然語言處理 ? 作者:深度學(xué)習(xí)自然語言 ? 2020-11-02 15:50 ? 次閱讀

導(dǎo)讀

國際表示學(xué)習(xí)大會(TheInternationalConference onLearningRepresentations)是致力于人工智能領(lǐng)域發(fā)展的國際知名學(xué)術(shù)會議之一。ICLR 2021 將在明年5月4日舉行,目前,本次大會投稿已經(jīng)結(jié)束,最后共有3013篇論文提交。ICLR 采用公開評審機制,任何人都可以提前看到這些論文。

為了分析最新研究動向,我們精選了涵蓋自監(jiān)督學(xué)習(xí)、Transformer、圖神經(jīng)網(wǎng)絡(luò)、自然語言處理、模型壓縮等熱點領(lǐng)域,將分多期為大家?guī)硐盗姓撐慕庾x。

本期的關(guān)注焦點是自監(jiān)督學(xué)習(xí)與Transformer。

自監(jiān)督學(xué)習(xí)

Self-Supervised Variational Auto-Encoders

變分自編碼器(VAE)往往通過假設(shè)先驗分布為高斯分布來簡化計算過程,實際上真實數(shù)據(jù)的分布往往較為復(fù)雜,該假設(shè)會導(dǎo)致模型的過正則化并影響模型對真實分布的擬合能力;本文通過利用多個簡單分布對復(fù)雜真實分布進行建模,并采用自監(jiān)督方法對這些分布之間進行約束,進而提升VAE模型最終的效果。

論文鏈接:https://openreview.net/forum?id=zOGdf9K8aC

Self-Supervised Learning from a Multi-View Perspective

即使自監(jiān)督學(xué)習(xí)已經(jīng)取得了很好的效果,現(xiàn)有的方法依舊并不清楚自監(jiān)督學(xué)習(xí)帶來增益的主要原因;本文基于信息空間的考慮,認為自監(jiān)督學(xué)習(xí)通過減少不相關(guān)信息來幫助收斂;此外本文還提出將自監(jiān)督任務(wù)的兩個經(jīng)典方法——對比學(xué)習(xí)和預(yù)測學(xué)習(xí)任務(wù)進行合并,結(jié)合兩者優(yōu)點以增強自監(jiān)督學(xué)習(xí)的效果。

論文鏈接:https://openreview.net/forum?id=-bdp_8Itjwp

Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels

現(xiàn)有的噪聲數(shù)據(jù)學(xué)習(xí)策略往往基于loss的噪聲識別與再過濾的框架,其需要模型在warm-up階段既能學(xué)習(xí)到足夠好的特征信息,同時不至于過分擬合噪聲數(shù)據(jù)的分布;改目的與對比學(xué)習(xí)任務(wù)非常契合,本文提出在warm-up階段采用對比學(xué)習(xí)幫助進行特征學(xué)習(xí),并基于對比學(xué)習(xí)策略幫助區(qū)分噪聲數(shù)據(jù)。

論文鏈接:https://openreview.net/forum?id=uB5x7Y2qsFR

Improving Self-Supervised Pre-Training via a Fully-Explored Masked Language Model

現(xiàn)有的BERT等模型往往采用masked language model進行自監(jiān)督學(xué)習(xí),但是其往往采用隨機的方法確定mask的word或者span;本文提出不合適的mask會導(dǎo)致梯度方差變大,并影響模型的效果,并分析原因在于同時mask的word之間具有一定的相似度;故本文提出一種特殊的mask機制,其考慮增大被mask的word之間的差異,進而削弱梯度方差大帶來的影響。

論文鏈接:https://openreview.net/forum?id=cYr2OPNyTz7

Bi-Tuning of Pre-Trained Representations

隨著預(yù)訓(xùn)練模型的快速發(fā)展,現(xiàn)有方法主要關(guān)注于如何進行pre-train,但是很少關(guān)注如何進行fine-tune;本文認為在fine-tune時模型很容易忘記預(yù)訓(xùn)練的信息并過擬合到當(dāng)前任務(wù),因此提出了一種特殊的Bi-tune策略,即利用對比學(xué)習(xí)作為正則項約束模型的收斂情況,進而幫助提升模型的效果。

論文鏈接:https://openreview.net/forum?id=3rRgu7OGgBI

Erasure for Advancing: Dynamic Self-Supervised Learning for Commonsense Reasoning

為了解決預(yù)訓(xùn)練模型很難學(xué)習(xí)到更精準的 question-clue pairs 問題,本文提出DynamIcSelf-sUperviSedErasure (DISUSE)。其中包含 erasure sampler 和 supervisor,分別用于擦出上下文和問題中的多余線索,以及使用 self-supervised manner 進行監(jiān)督。

論文鏈接:https://openreview.net/forum?id=WfY0jNndSn3

Transformer

Addressing Some Limitations of Transformers with Feedback Memory

Transformer結(jié)構(gòu)因其并行計算的特性有很高的計算效率,但是這種特性限制了Transformer發(fā)掘序列信息的能力,這體現(xiàn)在底層表示無法獲得高層表示信息。作者提出一種Feedback Memory結(jié)構(gòu),將所有歷史的底層和高層表示信息傳遞給未來表示。

論文鏈接:https://openreview.net/forum?id=OCm0rwa1lx1

Not All Memories are Created Equal: Learning to Expire

Attention機制往往需要長期的記憶,但是實際上并不是所有歷史信息都是重要的。因此,作者提出一種Expire-Span機制,動態(tài)地決定每一個時刻信息存活的時間長短,從而減少模型進行Attention操作耗費的空間開銷。

論文鏈接:https://openreview.net/forum?id=ZVBtN6B_6i7

Memformer: The Memory-Augmented Transformer

目前大部分Transformer變體模型在處理長序列時都會存在效率問題。作者提出一種利用Memory機制來編碼和保存歷史信息,使得時間復(fù)雜度下降到線性時間,空間復(fù)雜度變?yōu)槌?shù)。

論文鏈接:https://openreview.net/forum?id=_adSMszz_g9

Non-iterative Parallel Text Generation via Glancing Transformer

本文提出了一種基于 glancing language model 的 Glancing Transformer,通過 one-iteration 的生成方式提升 NAT 的性能。其中 Glancing language model,可以通過兩次 decoding 來降低學(xué)習(xí)難度以及加快生成速度。另外這種方法同樣可以應(yīng)用于其他基于 NAT 的任務(wù)。

論文鏈接:https://openreview.net/forum?id=ZaYZfu8pT_N

責(zé)任編輯:xj

原文標題:【ICLR2021必讀】 【自監(jiān)督學(xué)習(xí)】 & 【Transformer】相關(guān)論文

文章出處:【微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1791

    文章

    47314

    瀏覽量

    238648
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5503

    瀏覽量

    121206
  • Transformer
    +關(guān)注

    關(guān)注

    0

    文章

    143

    瀏覽量

    6013

原文標題:【ICLR2021必讀】 【自監(jiān)督學(xué)習(xí)】 & 【Transformer】相關(guān)論文

文章出處:【微信號:zenRRan,微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    時空引導(dǎo)下的時間序列監(jiān)督學(xué)習(xí)框架

    【導(dǎo)讀】最近,香港科技大學(xué)、上海AI Lab等多個組織聯(lián)合發(fā)布了一篇時間序列無監(jiān)督預(yù)訓(xùn)練的文章,相比原來的TS2Vec等時間序列表示學(xué)習(xí)工作,核心在于提出了將空間信息融入到預(yù)訓(xùn)練階段,即在預(yù)訓(xùn)練階段
    的頭像 發(fā)表于 11-15 11:41 ?267次閱讀
    時空引導(dǎo)下的時間序列<b class='flag-5'>自</b><b class='flag-5'>監(jiān)督學(xué)習(xí)</b>框架

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)知識學(xué)習(xí)

    收集海量的文本數(shù)據(jù)作為訓(xùn)練材料。這些數(shù)據(jù)集不僅包括語法結(jié)構(gòu)的學(xué)習(xí),還包括對語言的深層次理解,如文化背景、語境含義和情感色彩等。 監(jiān)督學(xué)習(xí):模型采用
    發(fā)表于 08-02 11:03

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)篇

    講解,包括偏置、權(quán)重、激活函數(shù);三要素包括網(wǎng)絡(luò)結(jié)構(gòu)、損失函數(shù)和優(yōu)化方法。章節(jié)最后總結(jié)了神經(jīng)網(wǎng)絡(luò)參數(shù)學(xué)習(xí)的關(guān)鍵步驟。 1.4章節(jié)描述了自然語言處理的相關(guān)知識點,包括什么是自然語言處理、文本的向量化和
    發(fā)表于 07-25 14:33

    Transformer能代替圖神經(jīng)網(wǎng)絡(luò)嗎

    Transformer作為一種在處理序列數(shù)據(jù)方面表現(xiàn)出色的深度學(xué)習(xí)模型,其提出以來,已經(jīng)在自然語言處理(NLP)、時間序列分析等領(lǐng)域取得了顯著的成果。然而,關(guān)于Transformer
    的頭像 發(fā)表于 07-12 14:07 ?466次閱讀

    神經(jīng)網(wǎng)絡(luò)如何用無監(jiān)督算法訓(xùn)練

    神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的重要組成部分,其訓(xùn)練方式多樣,其中無監(jiān)督學(xué)習(xí)是一種重要的訓(xùn)練策略。無監(jiān)督學(xué)習(xí)旨在從未標記的數(shù)據(jù)中發(fā)現(xiàn)數(shù)據(jù)內(nèi)在的結(jié)構(gòu)、模式或規(guī)律,從而提取有用的特征表示。這種訓(xùn)練方式對于大規(guī)模未
    的頭像 發(fā)表于 07-09 18:06 ?813次閱讀

    深度學(xué)習(xí)中的無監(jiān)督學(xué)習(xí)方法綜述

    應(yīng)用中往往難以實現(xiàn)。因此,無監(jiān)督學(xué)習(xí)在深度學(xué)習(xí)中扮演著越來越重要的角色。本文旨在綜述深度學(xué)習(xí)中的無監(jiān)督學(xué)習(xí)方法,包括自編碼器、生成對抗網(wǎng)絡(luò)、聚類算法等,并分析它們的原理、應(yīng)用場景以及優(yōu)
    的頭像 發(fā)表于 07-09 10:50 ?761次閱讀

    使用PyTorch搭建Transformer模型

    Transformer模型其問世以來,在自然語言處理(NLP)領(lǐng)域取得了巨大的成功,并成為了許多先進模型(如BERT、GPT等)的基礎(chǔ)。本文將深入解讀如何使用PyTorch框架搭建Transformer模型,包括模型的結(jié)構(gòu)、訓(xùn)
    的頭像 發(fā)表于 07-02 11:41 ?1646次閱讀

    基于xLSTM和Transformer的模型評估:xLSTM在“語言能力”的表現(xiàn)

    近期,Hochreiter在arXiv平臺發(fā)表論文,推出了一款新型的XLSTM(擴展LSTM)架構(gòu),有效克服了傳統(tǒng)LSTM互聯(lián)網(wǎng)結(jié)構(gòu)“僅能按時間順序處理信息”的局限性,有望挑戰(zhàn)當(dāng)前熱門的Transformer架構(gòu)。
    的頭像 發(fā)表于 05-13 10:31 ?804次閱讀

    CVPR&apos;24 Highlight!跟蹤3D空間中的一切!

    為了使用三維運動先驗正則化估計的三維軌跡,模型另外預(yù)測了每條軌跡的剛性嵌入,這使能夠軟地分組表現(xiàn)出相同剛性體運動的像素,并為每個剛性集群強制執(zhí)行ARAP正則化。作者證明了剛性嵌入可以通過監(jiān)督學(xué)習(xí),并產(chǎn)生不同剛性部分的合理分割。
    的頭像 發(fā)表于 04-13 12:12 ?1259次閱讀
    CVPR&apos;24 Highlight!跟蹤3D空間中的一切!

    機器學(xué)習(xí)基礎(chǔ)知識全攻略

    監(jiān)督學(xué)習(xí)通常是利用帶有專家標注的標簽的訓(xùn)練數(shù)據(jù),學(xué)習(xí)一個從輸入變量X到輸入變量Y的函數(shù)映射。Y = f (X),訓(xùn)練數(shù)據(jù)通常是(n×x,y)的形式,其中n代表訓(xùn)練樣本的大小,x和y分別是變量X和Y的樣本值。
    發(fā)表于 02-25 13:53 ?245次閱讀
    機器<b class='flag-5'>學(xué)習(xí)</b>基礎(chǔ)知識全攻略

    OpenAI推出Sora:AI領(lǐng)域的革命性突破

    大模型的核心技術(shù)是自然語言處理(NLP)和深度學(xué)習(xí)。具體而言,它基于Transformer架構(gòu),使用了大規(guī)模無監(jiān)督學(xué)習(xí)方法,例如回歸語言建模和掩碼語言建模,來訓(xùn)練一個龐大的神經(jīng)網(wǎng)絡(luò)模
    發(fā)表于 02-21 16:36 ?1022次閱讀
    OpenAI推出Sora:AI領(lǐng)域的革命性突破

    一文詳解Transformer神經(jīng)網(wǎng)絡(luò)模型

    Transformer模型在強化學(xué)習(xí)領(lǐng)域的應(yīng)用主要是應(yīng)用于策略學(xué)習(xí)和值函數(shù)近似。強化學(xué)習(xí)是指讓機器在與環(huán)境互動的過程中,通過試錯來學(xué)習(xí)最優(yōu)的
    發(fā)表于 02-20 09:55 ?1.4w次閱讀
    一文詳解<b class='flag-5'>Transformer</b>神經(jīng)網(wǎng)絡(luò)模型

    2024年AI領(lǐng)域?qū)心男┬峦黄颇兀?/a>

    傳統(tǒng)的機器學(xué)習(xí)需要大量的標記數(shù)據(jù)進行訓(xùn)練,但監(jiān)督學(xué)習(xí)可以通過無監(jiān)督的方式從大規(guī)模未標記的數(shù)據(jù)中學(xué)習(xí)到更有用的表示形式,從而提高模型的性能。
    的頭像 發(fā)表于 01-24 09:58 ?2026次閱讀

    語言模型的弱監(jiān)督視頻異常檢測方法

    了局部Transformer的mask,從時序上將輸入視頻幀特征分割為多個等長塊,令注意力計算局限于塊內(nèi),減少了冗余信息建模,降低計算復(fù)雜度。
    的頭像 發(fā)表于 01-02 15:20 ?844次閱讀
    語言模型的弱<b class='flag-5'>監(jiān)督</b>視頻異常檢測方法

    基于神經(jīng)輻射場的監(jiān)督多相機占用預(yù)測

    本研究提出了一種監(jiān)督的多攝相機3D占據(jù)預(yù)測方法,名為OccNeRF。該方法旨在解決無界場景的建模問題。
    的頭像 發(fā)表于 01-02 14:53 ?481次閱讀
    基于神經(jīng)輻射場的<b class='flag-5'>自</b><b class='flag-5'>監(jiān)督</b>多相機占用預(yù)測