過去幾十年間,激光打標(biāo)產(chǎn)業(yè)取得了顯著的發(fā)展?,F(xiàn)在,全球已經(jīng)有大量服務(wù)于各個(gè)行業(yè)的激光打標(biāo)系統(tǒng)供應(yīng)商。這個(gè)市場最重要的變化是推出了低功率脈沖光纖激光器,現(xiàn)在已經(jīng)發(fā)展到幾乎每個(gè)供應(yīng)商都能在其產(chǎn)品供給范圍內(nèi)提供這類光纖激光打標(biāo)設(shè)備。
這些激光器的波長通常屬于1070 nm左右的近紅外(NIR)范疇,非常適用于多數(shù)金屬產(chǎn)品的打標(biāo),因?yàn)榕c波長較長的CO2激光器相比,這種波長的反射率更低。
但即便在這一波長范圍內(nèi),不同金屬打標(biāo)的難易也不盡相同。鋁、銅及其合金被廣泛用于幾乎每個(gè)行業(yè),這些材料均可采用激光打標(biāo),但想在低熱條件下在這類金屬上打出肉眼清晰可見的深色標(biāo)記,有時(shí)依然會(huì)有難度。另外,一種已證實(shí)的技術(shù)表明,高透射材料通常可在不與意外非線性特性相關(guān)的脈沖寬度內(nèi)以最低損傷完成打標(biāo)和表面毛化處理等加工。
激光表面處理
在廣泛的工業(yè)激光材料加工領(lǐng)域,激光表面加工這一術(shù)語通常被用于描述一系列采用連續(xù)波(CW)、功率為數(shù)千瓦的近紅外激光源的加工活動(dòng)。然而,以上工藝與本文所描述的可被視作為微米和納米級(jí)表面應(yīng)用的技術(shù)完全不同。采用短脈沖皮秒(10-12)和飛秒(10-15)超快激光器的許多工藝已經(jīng)確定,也有許多相關(guān)內(nèi)容的發(fā)表。
這些工藝的主要缺點(diǎn)是:即便屬于這類激光器門類中的低功率系列產(chǎn)品,它們的投資與運(yùn)行成本仍然很高。由于加工速度通常取決于激光器的平均功率,對(duì)于大多數(shù)工業(yè)激光用戶而言,實(shí)際表面覆蓋率條件下的激光加工成本可能太高。
最近,成熟的納秒級(jí)脈沖光纖激光器的脈寬范圍已擴(kuò)展到亞納秒級(jí),隨之而來的是以數(shù)量級(jí)增加的峰值功率能力。這使開發(fā)出一種采用具成本效益的長皮秒激光源的新型激光表面加工工藝成為了可能。
雖然這些技術(shù)通常被稱為激光表面處理,從機(jī)械角度來看,這些工藝與激光打標(biāo)息息相關(guān),因?yàn)樗鼈兙窒抻趯?duì)部件的表面處理,通常需要結(jié)合采用激光消融與熔融工藝。
激光表面毛化處理與激光打標(biāo)分析
通過一定方式改變激光打標(biāo)表面區(qū)域,使之與未打標(biāo)區(qū)域形成視覺上的對(duì)照,激光標(biāo)記具有重要的應(yīng)用。
筆式表面輪廓儀也許是測量相關(guān)數(shù)據(jù)最有名、應(yīng)用最廣泛的技術(shù),因此,選用了該技術(shù)對(duì)激光處理進(jìn)行初步評(píng)估。表面形態(tài)學(xué)對(duì)更普遍的表面特性與形狀進(jìn)行定性、定量描述,成像技術(shù)在這里更為有用。因而,選用了共聚焦激光掃描顯微鏡的二維和三維圖像。
先進(jìn)的分光光度計(jì)被廣泛應(yīng)用于量化表面顏色。通過對(duì)從可見光譜上的多點(diǎn)表面上的反射光進(jìn)行分析能夠?qū)崿F(xiàn)這一目標(biāo),無論是否包含高光元素,都可形成反映各表面特性的獨(dú)特反射曲線。這些儀器也被廣泛用于測量表面的L*值或表面顏色的深淺?,F(xiàn)在,這種技術(shù)是量化激光對(duì)各種消費(fèi)品的打標(biāo)效用時(shí)必不可少的工具。這些反射曲線和L*值被用來量化高峰值功率、短脈沖型光纖激光器在鋁、銅和玻璃這三種具有挑戰(zhàn)性的材料上的效用。
審核編輯 黃昊宇
-
激光打標(biāo)
+關(guān)注
關(guān)注
0文章
40瀏覽量
8045
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論