0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工神經(jīng)網(wǎng)絡(luò)需學(xué)習(xí)也可執(zhí)行任務(wù)

454398 ? 來(lái)源:ST社區(qū) ? 作者:ST社區(qū) ? 2020-10-13 14:00 ? 次閱讀

神經(jīng)網(wǎng)絡(luò)無(wú)需學(xué)習(xí)就能駕駛虛擬賽車。

動(dòng)物生下來(lái)就具有天生的能力和稟性。馬生下來(lái)幾小時(shí)后就會(huì)走,鴨子孵出來(lái)后很快就會(huì)游,人類嬰兒自然而然會(huì)被人臉吸引。大腦進(jìn)化到了即使幾乎沒有經(jīng)驗(yàn)也敢于面對(duì)世界的地步,許多研究人員希望AI也有這種天生的能力。

新研究發(fā)現(xiàn),人工神經(jīng)網(wǎng)絡(luò)可以進(jìn)化到無(wú)需學(xué)習(xí)即可執(zhí)行任務(wù)的程度。該技術(shù)有望帶來(lái)這樣的AI:極其擅長(zhǎng)處理各種任務(wù),比如為照片添加標(biāo)簽或駕駛汽車。

人工神經(jīng)網(wǎng)絡(luò)對(duì)彼此之間傳輸信息的小型計(jì)算單元(“神經(jīng)元”)進(jìn)行了排列。這種網(wǎng)絡(luò)常常通過調(diào)整神經(jīng)元之間連接的“權(quán)重”或強(qiáng)度來(lái)學(xué)習(xí)諸多任務(wù),比如玩游戲或識(shí)別圖像。一種名為神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索(neural architecture search)的技術(shù)試過眾多網(wǎng)絡(luò)形狀和大小,以找到針對(duì)某特定用途提高學(xué)習(xí)能力的那種網(wǎng)絡(luò)形狀和大小。

新方法使用同樣這種搜索技術(shù)來(lái)查找權(quán)重并不重要的網(wǎng)絡(luò)。對(duì)于這種網(wǎng)絡(luò)而言,網(wǎng)絡(luò)的整體形狀決定了它的智能,可能使其特別適合某些任務(wù)。

供職于谷歌Brain的論文主要作者、計(jì)算機(jī)科學(xué)家Adam Gaier說:“如果動(dòng)物有所有這些天生的行為,一些神經(jīng)網(wǎng)絡(luò)在未經(jīng)大量訓(xùn)練的情況下就有出色的表現(xiàn),我們想知道我們能將這個(gè)想法運(yùn)用到多先進(jìn)的程度。”

整個(gè)過程始于一組很簡(jiǎn)單的網(wǎng)絡(luò),這些網(wǎng)絡(luò)將輸入(比如來(lái)自機(jī)器人傳感器的數(shù)據(jù))與行為輸出連接起來(lái)。它評(píng)估網(wǎng)絡(luò)處理特定任務(wù)時(shí)的性能,保持網(wǎng)絡(luò)處于最佳性能狀態(tài),并通過添加神經(jīng)元、添加連接或改變神經(jīng)元對(duì)輸入總和的敏感度使網(wǎng)絡(luò)發(fā)生突變。在評(píng)估階段,為網(wǎng)絡(luò)的所有權(quán)重賦予一個(gè)共享的隨機(jī)數(shù)。(這實(shí)際上針對(duì)幾個(gè)隨機(jī)數(shù)來(lái)完成,然后對(duì)結(jié)果求平均值。)

結(jié)果名為與權(quán)重?zé)o關(guān)的神經(jīng)網(wǎng)絡(luò)(WANN)。這種網(wǎng)絡(luò)因處理任務(wù)時(shí)表現(xiàn)出色和很簡(jiǎn)單而獲得加分。處理該研究論文中那些任務(wù)的典型網(wǎng)絡(luò)可能有數(shù)千個(gè)神經(jīng)元和權(quán)重,而WANN只有少量的神經(jīng)元和僅僅一個(gè)權(quán)重。

但令人驚訝的是,WANN仍表現(xiàn)不俗。研究團(tuán)隊(duì)將它們與標(biāo)準(zhǔn)網(wǎng)絡(luò)架構(gòu)進(jìn)行了比較,標(biāo)準(zhǔn)網(wǎng)絡(luò)架構(gòu)的權(quán)重經(jīng)過逐漸完善,可以熟練完成這三項(xiàng)模擬任務(wù):駕駛賽車、使兩足機(jī)器人行走以及控制雙輪推車以平衡支桿。

兩條腿旁邊是神經(jīng)網(wǎng)絡(luò)及眾多連接的示意圖。盡管沒有取得高分,但前一代網(wǎng)絡(luò)中的極簡(jiǎn)架構(gòu)仍能控制此處所示的向前行走的Bipedal Walker兩足機(jī)器人。

與經(jīng)過訓(xùn)練的網(wǎng)絡(luò)相比,WANN得到的分?jǐn)?shù)只有其分?jǐn)?shù)的六分之一到一半。研究人員賦予表現(xiàn)最佳的權(quán)重而不是隨機(jī)權(quán)重后,與經(jīng)過訓(xùn)練的網(wǎng)絡(luò)相比,WANN得到的分?jǐn)?shù)提高到三分之二到五分之四。如果在進(jìn)化后,以訓(xùn)練龐大標(biāo)準(zhǔn)網(wǎng)絡(luò)的同一方式來(lái)訓(xùn)練WANN,其性能與標(biāo)準(zhǔn)網(wǎng)絡(luò)相媲美。

在涉及識(shí)別手寫數(shù)字的任務(wù)中,WANN的準(zhǔn)確率超過90%(而針對(duì)這項(xiàng)任務(wù)訓(xùn)練的龐大網(wǎng)絡(luò)的準(zhǔn)確率為99%)。該研究論文上個(gè)月在加拿大溫哥華的神經(jīng)信息處理系統(tǒng)(NeurIPS)大會(huì)上公布。

優(yōu)步AI實(shí)驗(yàn)室(Uber AI Labs)的計(jì)算機(jī)科學(xué)家Rosanne Liu沒有參與這項(xiàng)研究,他說:“他們的整個(gè)系統(tǒng)切實(shí)可行,這非常了不起?!逼渌芯咳藛T嘗試開發(fā)不依賴權(quán)重的網(wǎng)絡(luò),但以失敗告終。Gaier稱,這個(gè)突破最初是為所有權(quán)重賦予同一數(shù)字的bug,卻不料最終簡(jiǎn)化了網(wǎng)絡(luò)搜索。

雖然WANN的性能未能超過經(jīng)過訓(xùn)練的大型網(wǎng)絡(luò),但該方法為尋找專門適合不同任務(wù)的網(wǎng)絡(luò)架構(gòu)開辟了一條新途徑,正如大腦各部位以不同的方式相連以適合特定的用途。比如說,卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn)是擁有適合圖像識(shí)別的架構(gòu),可以映射大腦視覺皮層的結(jié)構(gòu)。Gaier認(rèn)為,可能還有多得多的構(gòu)建模塊,準(zhǔn)備使AI一問世就很聰明。

編輯:hfy
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01
    的頭像 發(fā)表于 01-09 10:24 ?180次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí),或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實(shí)驗(yàn)研究,請(qǐng)繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實(shí)驗(yàn)的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)?“人工
    的頭像 發(fā)表于 11-01 08:06 ?327次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    不同類型神經(jīng)網(wǎng)絡(luò)在回歸任務(wù)中的應(yīng)用

    神經(jīng)網(wǎng)絡(luò)是一種強(qiáng)大的機(jī)器學(xué)習(xí)模型,可以用于各種任務(wù),包括回歸。在本文中,我們將討論不同類型的神經(jīng)網(wǎng)絡(luò),以及它們?cè)诨貧w任務(wù)中的應(yīng)用。 基本的
    的頭像 發(fā)表于 07-11 10:27 ?1391次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-10 15:24 ?1653次閱讀

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個(gè)基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及
    的頭像 發(fā)表于 07-10 15:20 ?1199次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的案例分析

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)作為深度學(xué)習(xí)領(lǐng)域的重要分支,自20世紀(jì)80年代以來(lái)一直是人工智能領(lǐng)域的研究熱點(diǎn)。其靈感來(lái)源于生物
    的頭像 發(fā)表于 07-08 18:20 ?845次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型包含哪些層次

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)的計(jì)算模型,具有自適應(yīng)、自學(xué)習(xí)、泛化能力強(qiáng)等特點(diǎn)。本文將詳細(xì)介紹
    的頭像 發(fā)表于 07-05 09:17 ?656次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練的基本原理

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而構(gòu)建的數(shù)學(xué)模型,用于模擬人腦處理信息的方式。它在機(jī)器學(xué)習(xí)和深度
    的頭像 發(fā)表于 07-05 09:16 ?744次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型的分類有哪些

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs)是一種模擬人腦神經(jīng)元網(wǎng)絡(luò)的計(jì)算模型,它在許多領(lǐng)域,如圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理、預(yù)測(cè)分析等有著廣泛的應(yīng)用。本文將
    的頭像 發(fā)表于 07-05 09:13 ?1293次閱讀

    神經(jīng)網(wǎng)絡(luò)芯片和普通芯片區(qū)別

    處理神經(jīng)網(wǎng)絡(luò)算法的芯片。它通過模擬人腦神經(jīng)元的工作方式,實(shí)現(xiàn)了對(duì)大量數(shù)據(jù)的并行處理和快速學(xué)習(xí)。 普通芯片,又稱通用芯片,是指可以執(zhí)行各種計(jì)算任務(wù)
    的頭像 發(fā)表于 07-04 09:30 ?1279次閱讀

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是什么

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是密不可分的。神經(jīng)網(wǎng)絡(luò)人工智能的一種重要實(shí)現(xiàn)方式,而人工智能則是神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:25 ?1222次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    化能力。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之一。卷積神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)
    的頭像 發(fā)表于 07-02 14:24 ?4482次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的含義和用途是

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而構(gòu)建的數(shù)學(xué)模型,它通過模擬人腦神經(jīng)元的連接和信息傳遞方式來(lái)實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的處
    的頭像 發(fā)表于 07-02 10:07 ?916次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的工作原理是什么

    學(xué)習(xí)。本文將詳細(xì)介紹人工神經(jīng)網(wǎng)絡(luò)的工作原理,包括其基本概念、結(jié)構(gòu)、學(xué)習(xí)算法和應(yīng)用領(lǐng)域。 基本概念 1.1 神經(jīng)
    的頭像 發(fā)表于 07-02 10:06 ?1370次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的模型及其應(yīng)用有哪些

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)的計(jì)算模型,它通過模擬人腦神經(jīng)元的連接和交互來(lái)實(shí)現(xiàn)對(duì)數(shù)據(jù)的
    的頭像 發(fā)表于 07-02 10:04 ?1126次閱讀