0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

CNN的十個(gè)特征和實(shí)現(xiàn)圖像識(shí)別的步驟

如意 ? 來(lái)源:CSDN ? 作者:呆呆的貓 ? 2020-08-24 16:04 ? 次閱讀

如何利用CNN實(shí)現(xiàn)圖像識(shí)別的任務(wù)

輸入層讀入經(jīng)過(guò)規(guī)則化(統(tǒng)一大?。┑膱D像,每一層的每個(gè)神經(jīng)元將前一層的一組小的局部近鄰的單元作為輸入,也就是局部感受野和權(quán)值共享,神經(jīng)元抽取一些基本的視覺(jué)特征,比如邊緣、角點(diǎn)等,這些特征之后會(huì)被更高層的神經(jīng)元所使用。卷積神經(jīng)網(wǎng)絡(luò)通過(guò)卷積操作獲得特征圖,每個(gè)位置,來(lái)自不同特征圖的單元得到各自不同類(lèi)型的特征。一個(gè)卷積層中通常包含多個(gè)具有不同權(quán)值向量的特征圖,使得能夠保留圖像更豐富的特征。卷積層后邊會(huì)連接池化層進(jìn)行降采樣操作,一方面可以降低圖像的分辨率,減少參數(shù)量,另一方面可以獲得平移和形變的魯棒性。卷積層和池化層的交替分布,使得特征圖的數(shù)目逐步增多,而且分辨率逐漸降低,是一個(gè)雙金字塔結(jié)構(gòu)。

CNN的特征

1)具有一些傳統(tǒng)技術(shù)所沒(méi)有的優(yōu)點(diǎn):良好的容錯(cuò)能力、并行處理能力和自學(xué)習(xí)能力,可處理環(huán)境信息復(fù)雜,背景知識(shí)不清楚,推理規(guī)則不明確情況下的問(wèn)題,允許樣品有較大的缺損、畸變,運(yùn)行速度快,自適應(yīng)性能好,具有較高的分辨率。它是通過(guò)結(jié)構(gòu)重組和減少權(quán)值將特征抽取功能融合進(jìn)多層感知器,省略識(shí)別前復(fù)雜的圖像特征抽取過(guò)程。

2)泛化能力要顯著優(yōu)于其它方法,卷積神經(jīng)網(wǎng)絡(luò)已被應(yīng)用于模式分類(lèi),物體檢測(cè)和物體識(shí)別等方面。利用卷積神經(jīng)網(wǎng)絡(luò)建立模式分類(lèi)器,將卷積神經(jīng)網(wǎng)絡(luò)作為通用的模式分類(lèi)器,直接用于灰度圖像。

3)是一個(gè)前潰式神經(jīng)網(wǎng)絡(luò),能從一個(gè)二維圖像中提取其拓?fù)浣Y(jié)構(gòu),采用反向傳播算法來(lái)優(yōu)化網(wǎng)絡(luò)結(jié)構(gòu),求解網(wǎng)絡(luò)中的未知參數(shù)。

4)一類(lèi)特別設(shè)計(jì)用來(lái)處理二維數(shù)據(jù)的多層神經(jīng)網(wǎng)絡(luò)。CNN被認(rèn)為是第一個(gè)真正成功的采用多層層次結(jié)構(gòu)網(wǎng)絡(luò)的具有魯棒性的深度學(xué)習(xí)方法。CNN通過(guò)挖掘數(shù)據(jù)中的空間上的相關(guān)性,來(lái)減少網(wǎng)絡(luò)中的可訓(xùn)練參數(shù)的數(shù)量,達(dá)到改進(jìn)前向傳播網(wǎng)絡(luò)的反向傳播算法效率,因?yàn)镃NN需要非常少的數(shù)據(jù)預(yù)處理工作,所以也被認(rèn)為是一種深度學(xué)習(xí)的方法。在CNN中,圖像中的小塊區(qū)域(也叫做“局部感知區(qū)域”)被當(dāng)做層次結(jié)構(gòu)中的底層的輸入數(shù)據(jù),信息通過(guò)前向傳播經(jīng)過(guò)網(wǎng)絡(luò)中的各個(gè)層,在每一層中都由過(guò)濾器構(gòu)成,以便能夠獲得觀測(cè)數(shù)據(jù)的一些顯著特征。因?yàn)榫植扛兄獏^(qū)域能夠獲得一些基礎(chǔ)的特征,比如圖像中的邊界和角落等,這種方法能夠提供一定程度對(duì)位移、拉伸和旋轉(zhuǎn)的相對(duì)不變性。

5)CNN中層次之間的緊密聯(lián)系和空間信息使得其特別適用于圖像的處理和理解,并且能夠自動(dòng)的從圖像抽取出豐富的相關(guān)特性。

6)CNN通過(guò)結(jié)合局部感知區(qū)域、共享權(quán)重、空間或者時(shí)間上的降采樣來(lái)充分利用數(shù)據(jù)本身包含的局部性等特征,優(yōu)化網(wǎng)絡(luò)結(jié)構(gòu),并且保證一定程度上的位移和變形的不變性。

7)CNN是一種深度的監(jiān)督學(xué)習(xí)下的機(jī)器學(xué)習(xí)模型,具有極強(qiáng)的適應(yīng)性,善于挖掘數(shù)據(jù)局部特征,提取全局訓(xùn)練特征和分類(lèi),它的權(quán)值共享結(jié)構(gòu)網(wǎng)絡(luò)使之更類(lèi)似于生物神經(jīng)網(wǎng)絡(luò),在模式識(shí)別各個(gè)領(lǐng)域都取得了很好的成果。

8) CNN可以用來(lái)識(shí)別位移、縮放及其它形式扭曲不變性的二維或三維圖像。CNN的特征提取層參數(shù)是通過(guò)訓(xùn)練數(shù)據(jù)學(xué)習(xí)得到的,所以其避免了人工特征提取,而是從訓(xùn)練數(shù)據(jù)中進(jìn)行學(xué)習(xí);其次同一特征圖的神經(jīng)元共享權(quán)值,減少了網(wǎng)絡(luò)參數(shù),這也是卷積網(wǎng)絡(luò)相對(duì)于全連接網(wǎng)絡(luò)的一大優(yōu)勢(shì)。共享局部權(quán)值這一特殊結(jié)構(gòu)更接近于真實(shí)的生物神經(jīng)網(wǎng)絡(luò)使CNN在圖像處理、語(yǔ)音識(shí)別領(lǐng)域有著獨(dú)特的優(yōu)越性,另一方面權(quán)值共享同時(shí)降低了網(wǎng)絡(luò)的復(fù)雜性,且多維輸入信號(hào)(語(yǔ)音、圖像)可以直接輸入網(wǎng)絡(luò)的特點(diǎn)避免了特征提取和分類(lèi)過(guò)程中數(shù)據(jù)重排的過(guò)程。

9)CNN的分類(lèi)模型與傳統(tǒng)模型的不同點(diǎn)在于其可以直接將一幅二維圖像輸入模型中,接著在輸出端即給出分類(lèi)結(jié)果。其優(yōu)勢(shì)在于不需復(fù)雜的預(yù)處理,將特征抽取,模式分類(lèi)完全放入一個(gè)黑匣子中,通過(guò)不斷的優(yōu)化來(lái)獲得網(wǎng)絡(luò)所需參數(shù),在輸出層給出所需分類(lèi),網(wǎng)絡(luò)核心就是網(wǎng)絡(luò)的結(jié)構(gòu)設(shè)計(jì)與網(wǎng)絡(luò)的求解。這種求解結(jié)構(gòu)比以往多種算法性能更高。

10)隱層的參數(shù)個(gè)數(shù)和隱層的神經(jīng)元個(gè)數(shù)無(wú)關(guān),只和濾波器的大小和濾波器種類(lèi)的多少有關(guān)。隱層的神經(jīng)元個(gè)數(shù),它和原圖像,也就是輸入的大?。ㄉ窠?jīng)元個(gè)數(shù))、濾波器的大小和濾波器在圖像中的滑動(dòng)步長(zhǎng)都有關(guān)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4771

    瀏覽量

    100777
  • 卷積
    +關(guān)注

    關(guān)注

    0

    文章

    95

    瀏覽量

    18512
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    352

    瀏覽量

    22217
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    AI大模型在圖像識(shí)別中的優(yōu)勢(shì)

    大模型借助高性能的計(jì)算硬件和優(yōu)化的算法,能夠在短時(shí)間內(nèi)完成對(duì)大量圖像數(shù)據(jù)的處理和分析,顯著提高了圖像識(shí)別的效率。 識(shí)別準(zhǔn)確性 :通過(guò)深度學(xué)習(xí)和計(jì)算機(jī)視覺(jué)技術(shù),AI大模型能夠自動(dòng)提取圖像
    的頭像 發(fā)表于 10-23 15:01 ?670次閱讀

    圖像檢測(cè)和圖像識(shí)別的原理、方法及應(yīng)用場(chǎng)景

    圖像檢測(cè)和圖像識(shí)別是計(jì)算機(jī)視覺(jué)領(lǐng)域的兩個(gè)重要概念,它們?cè)谠S多應(yīng)用場(chǎng)景中發(fā)揮著關(guān)鍵作用。 1. 定義 1.1 圖像檢測(cè) 圖像檢測(cè)(Object
    的頭像 發(fā)表于 07-16 11:19 ?4218次閱讀

    圖像識(shí)別算法都有哪些方法

    圖像識(shí)別算法是計(jì)算機(jī)視覺(jué)領(lǐng)域的核心任務(wù)之一,它涉及到從圖像中提取特征并進(jìn)行分類(lèi)、識(shí)別和分析的過(guò)程。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,圖像識(shí)別算法已
    的頭像 發(fā)表于 07-16 11:14 ?5589次閱讀

    圖像識(shí)別算法的核心技術(shù)是什么

    圖像識(shí)別算法是計(jì)算機(jī)視覺(jué)領(lǐng)域的一個(gè)重要研究方向,其目標(biāo)是使計(jì)算機(jī)能夠像人類(lèi)一樣理解和識(shí)別圖像中的內(nèi)容。圖像識(shí)別算法的核心技術(shù)包括以下幾個(gè)方面
    的頭像 發(fā)表于 07-16 11:02 ?646次閱讀

    圖像識(shí)別技術(shù)包括自然語(yǔ)言處理嗎

    計(jì)算機(jī)視覺(jué)技術(shù)對(duì)圖像進(jìn)行處理、分析和理解,從而實(shí)現(xiàn)對(duì)圖像中的目標(biāo)、場(chǎng)景、行為等信息的識(shí)別和理解。圖像識(shí)別技術(shù)包括
    的頭像 發(fā)表于 07-16 10:54 ?839次閱讀

    圖像識(shí)別技術(shù)的原理是什么

    圖像識(shí)別技術(shù)是一種利用計(jì)算機(jī)視覺(jué)和機(jī)器學(xué)習(xí)技術(shù)對(duì)圖像進(jìn)行分析和理解的技術(shù)。它可以幫助計(jì)算機(jī)識(shí)別和理解圖像中的對(duì)象、場(chǎng)景和活動(dòng)。 圖像預(yù)處理
    的頭像 發(fā)表于 07-16 10:46 ?1028次閱讀

    圖像識(shí)別屬于人工智能嗎

    屬于。圖像識(shí)別是人工智能(Artificial Intelligence, AI)領(lǐng)域的一個(gè)重要分支。 一、圖像識(shí)別概述 1.1 定義 圖像識(shí)別是指利用計(jì)算機(jī)技術(shù)對(duì)
    的頭像 發(fā)表于 07-16 10:44 ?1133次閱讀

    opencv圖像識(shí)別有什么算法

    圖像識(shí)別算法: 邊緣檢測(cè) :邊緣檢測(cè)是圖像識(shí)別中的基本步驟之一,用于識(shí)別圖像中的邊緣。常見(jiàn)的邊緣檢測(cè)算法有Canny邊緣檢測(cè)器、Sobel邊
    的頭像 發(fā)表于 07-16 10:40 ?1049次閱讀

    如何設(shè)計(jì)人臉識(shí)別的神經(jīng)網(wǎng)絡(luò)

    識(shí)別技術(shù)主要分為兩個(gè)步驟:人臉檢測(cè)和人臉特征提取。人臉檢測(cè)是指在圖像中定位出人臉的位置和大小,人臉特征
    的頭像 發(fā)表于 07-04 09:20 ?663次閱讀

    如何利用CNN實(shí)現(xiàn)圖像識(shí)別

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)是深度學(xué)習(xí)領(lǐng)域中一種特別適用于圖像識(shí)別任務(wù)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。它通過(guò)模擬人類(lèi)視覺(jué)系統(tǒng)的處理方式,利用卷積、池化等操作,自動(dòng)提取圖像中的特征,進(jìn)而
    的頭像 發(fā)表于 07-03 16:16 ?1391次閱讀

    圖像檢測(cè)和圖像識(shí)別的區(qū)別是什么

    詳細(xì)的比較和分析。 定義和概念 圖像檢測(cè)(Image Detection)是指利用計(jì)算機(jī)視覺(jué)技術(shù)對(duì)圖像中的特定目標(biāo)進(jìn)行定位和識(shí)別的過(guò)程。它通常包括目標(biāo)的檢測(cè)、分類(lèi)和定位三個(gè)
    的頭像 發(fā)表于 07-03 14:41 ?1013次閱讀

    神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別領(lǐng)域的應(yīng)用日益廣泛。神經(jīng)網(wǎng)絡(luò)以其強(qiáng)大的特征提取和分類(lèi)能力,為圖像識(shí)別帶來(lái)了革命性的進(jìn)步。本文將詳細(xì)介紹神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中的應(yīng)用案例,包括
    的頭像 發(fā)表于 07-01 14:19 ?683次閱讀

    圖像識(shí)別技術(shù)原理 圖像識(shí)別技術(shù)的應(yīng)用領(lǐng)域

    圖像識(shí)別技術(shù)是一種通過(guò)計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解的技術(shù)。它借助計(jì)算機(jī)視覺(jué)、模式識(shí)別、人工智能等相關(guān)技術(shù),通過(guò)對(duì)圖像進(jìn)行特征提取和匹配,找出
    的頭像 發(fā)表于 02-02 11:01 ?2465次閱讀

    基于TensorFlow和Keras的圖像識(shí)別

    TensorFlow和Keras最常見(jiàn)的用途之一是圖像識(shí)別/分類(lèi)。通過(guò)本文,您將了解如何使用Keras達(dá)到這一目的。定義如果您不了解圖像識(shí)別的基本概念,將很難完全理解本文的內(nèi)容。因此在正文開(kāi)始之前
    的頭像 發(fā)表于 01-13 08:27 ?830次閱讀
    基于TensorFlow和Keras的<b class='flag-5'>圖像識(shí)別</b>

    如何使用Python進(jìn)行圖像識(shí)別的自動(dòng)學(xué)習(xí)自動(dòng)訓(xùn)練?

    圖像識(shí)別的自動(dòng)學(xué)習(xí)和自動(dòng)訓(xùn)練。 首先,讓我們了解一下圖像識(shí)別的基本概念。圖像識(shí)別是指通過(guò)計(jì)算機(jī)程序識(shí)別和理解圖像內(nèi)容的過(guò)程。自動(dòng)學(xué)習(xí)和自動(dòng)訓(xùn)
    的頭像 發(fā)表于 01-12 16:06 ?593次閱讀