在電子器件的高速發(fā)展過程中,電子元器件的總功率密度也不斷的增大,但是其尺寸卻越來越較小,熱流密度就會持續(xù)增加,在這種高溫的環(huán)境中勢必會影響電子元器件的性能指標(biāo),對此,必須要加強(qiáng)對電子元器件的熱控制。如何解決電子元器件的散熱問題是現(xiàn)階段的重點。對此,文章主要對電子元器件的散熱方法進(jìn)行了簡單的分析。
電子元器件的高效散熱問題,受到傳熱學(xué)以及流體力學(xué)的原理影響。電氣器件的散熱就是對電子設(shè)備運行溫度進(jìn)行控制,進(jìn)而保障其工作的溫度性以及安全性,其主要涉及到了散熱、材料等各個方面的不同內(nèi)容?,F(xiàn)階段主要的散熱方式主要就是自然、強(qiáng)制、液體、制冷、疏導(dǎo)、熱隔離等方式。
1. 自然散熱或冷卻方式
自然散熱或者冷卻方式就是在自然的狀況之下,不接受任何外部輔助能量的影響,通過局部發(fā)熱器件以周圍環(huán)境散熱的方式進(jìn)行溫度控制,其主要的方式就是導(dǎo)熱、對流以及輻射集中方式,而主要應(yīng)用的就是對流以及自然對流幾種方式。其中自然散熱以及冷卻方式主要就是應(yīng)用在對溫度控制要求較低的電子元器件、器件發(fā)熱的熱流密度相對較低的低功耗的器材以及部件之中。在密封以及密集性組裝的器件中無需應(yīng)用其他冷卻技術(shù)的狀態(tài)之中也可以應(yīng)用此種方式。在一些時候,對于散熱能力要求相對較低的時候也會利用電子器件自身的特征,適當(dāng)?shù)脑黾悠渑c臨近的熱沉導(dǎo)熱或者輻射影響,在通過優(yōu)化結(jié)構(gòu)優(yōu)化自然對流,進(jìn)而增強(qiáng)系統(tǒng)的散熱能力。
2. 強(qiáng)制散熱或冷卻方法
強(qiáng)制散熱或冷卻方法就是通過風(fēng)扇等方式加快電子元器件周邊的空氣流動,帶走熱量的一種方式。此種方式較為簡單便捷,應(yīng)用效果顯著。在電子元器件中如果其空間較大使得空氣流動或者安裝一些散熱設(shè)施,就可以應(yīng)用此種方式。在實踐中,提升此種對流傳熱能力的主要方式具體如下:要適當(dāng)?shù)脑黾由岬目偯娣e,要在散熱表面產(chǎn)生相對較大的對流傳熱系數(shù)。
在實踐中,增大散熱器表面散熱面積的方式應(yīng)用較為廣泛。在工程中主要就是通過翅片的方式拓展散熱器的表面面積,進(jìn)而強(qiáng)化傳熱效果。而翅片散熱方式可以分為不同的形式,在一些熱耗電子器件的表面以及空氣中應(yīng)用的換熱器件。應(yīng)用此種模式可以減少熱沉熱阻,也可以提升其散熱的效果。而對于一些功率相對較大的電子期間,則可以應(yīng)用航空中的擾流方式進(jìn)行處理,通過對散熱器中增加擾流片,在散熱器的表面流場中引入擾流則可以提升換熱的效果。
當(dāng)然,散熱器本身材料的選擇跟其散熱性能有著直接的關(guān)系目前,散熱器的材料主要是用鋁經(jīng)過壓鑄型加折疊鰭/沖壓薄鰭而制成的,鋁具有高的熱傳導(dǎo)率(198W/mK)和不易氧化的優(yōu)點,另外,傳導(dǎo)率大于200W/mk的AIN陶瓷,用這種材料制成的散熱器具有高的熱傳導(dǎo)率、不導(dǎo)電、長期暴露在空氣中不會氧化的優(yōu)點,這種材料已在電子元件的封裝技術(shù)和行波管中得到了應(yīng)用。此外,用硅材料制作熱沉在微型系統(tǒng)中也得到了廣泛的應(yīng)用,通過化學(xué)加工方法可以在硅材料上得到理想深寬比的微通道。
3. 液體冷卻散熱方法
對電子元器件中應(yīng)用液體冷卻的方法進(jìn)行散熱處理,是一種基于芯片以及芯片組件形成的散熱方式。液體冷卻主要可以分為直接冷卻以及間接冷卻兩種方式。間接液體冷卻方式就是其應(yīng)用的液體冷卻劑與直接與電子元件進(jìn)行接觸,通過中間的媒介系統(tǒng),利用液體模塊、導(dǎo)熱模塊、噴射液體模塊以及液體基板等輔助裝置在發(fā)射的熱元件中之間的進(jìn)行傳遞。直接的液體冷卻方式也可以稱之為浸入冷卻方式,就是將液體與相關(guān)電子元件直接接觸,通過冷卻劑吸收熱量并且?guī)ё邿崃?,主要就是在一些熱耗體積密度相對較高或者在高溫環(huán)境中應(yīng)用的器件。
4. 散熱或冷卻方法的制冷方法
散熱或冷卻方法的制冷方法主要有制冷劑的相變冷卻以及Pcltier制冷兩種方式,在不同的環(huán)境中其采取的方式也是不同的,要綜合實際狀況合理應(yīng)用。 1 制冷劑的相變冷卻 就是一種通過制冷劑的相變作用吸收大量熱量的方式,可以在一些特定的場合中冷卻電子器件。而一般狀態(tài)主要就是通過制冷劑蒸發(fā)帶走環(huán)境中的熱量,其主要包括了容積沸騰以及流動沸騰兩種類型。在一般狀況之下,深冷技術(shù)也在電子元器件的冷卻中有著重要的價值與影響。在一些功率相對較大的計算機(jī)系統(tǒng)中則可以應(yīng)用深冷技術(shù),不僅僅可以提升循環(huán)效率,其制冷的數(shù)量以及溫度范圍也較為廣泛,整個機(jī)器設(shè)備的結(jié)構(gòu)相對的較為緊湊且循環(huán)的效率也相對較高。2 Pcltier制冷 通過半導(dǎo)體制冷的方式散熱或者冷卻處理一些常規(guī)性的電子元器件,具有裝置體積小、安裝便捷且質(zhì)量較強(qiáng)、便于拆卸的優(yōu)勢。此種方式也稱之為稱熱電制冷方式,就是通過半導(dǎo)體材料自身的Pcltier效應(yīng),在直流電通過不同的半導(dǎo)體材料在串聯(lián)的作用之下形成電偶,可以通過在電偶兩端吸收熱量、放出熱量,這樣就可以實現(xiàn)制冷的效果。此種方式是一種產(chǎn)生負(fù)熱阻的制冷技術(shù)與手段,其穩(wěn)定性相對較高,但是因為其成本相對較高,效率也相對較低,在一些體積相對較為緊湊,且對于制冷要求較低的環(huán)境中應(yīng)用。其散熱溫度≤100℃;冷卻負(fù)載≤300W。
5. 散熱或冷卻中的能量疏導(dǎo)方式
就是通過傳遞熱量的傳熱元件將電子器件散發(fā)的熱量傳遞給另一個環(huán)境中。而在電子電路集成化的過程中,大功率的電子器件逐漸增加,電子器件的尺寸也越來越小。對此,這就要求散熱裝置自身要具有一定的散熱條件,而散熱裝置自身也要具有一定的散熱條件。因為熱管技術(shù)其自身具有一定的導(dǎo)熱性特征,具有良好的等溫性特征,在應(yīng)用中具有熱流密度可變性且恒溫特性良好、可以快速適應(yīng)環(huán)境的優(yōu)勢,在電子電氣設(shè)備的散熱中應(yīng)用較為廣泛,可以有效的滿足散熱裝置的靈活、高效率且可靠性的特征,現(xiàn)階段在電氣設(shè)備、電子元器件冷卻以及半導(dǎo)體元件的散熱方面中應(yīng)用較為廣泛。熱管是一種高效率且通過相變傳熱方式進(jìn)行熱傳導(dǎo)的模式,在電子元器件散熱中應(yīng)用較為廣泛。在實踐中,必須要對不同的種類要求,對熱管進(jìn)行單獨的設(shè)計,分析重力以及外力等因素的影響等合理設(shè)計。而在進(jìn)行熱管設(shè)計過程中要分析制作的材料、工藝以及潔凈度等問題,要嚴(yán)格控制產(chǎn)品質(zhì)量,對其進(jìn)行溫度監(jiān)控處理。
6. 熱隔離散熱方法
熱隔離就是通過絕熱技術(shù)進(jìn)行電子元器件散熱以及冷卻處理的影響。其主要分為真空絕熱以及非真空絕熱兩種形式。在電子元件的溫度控制上其主要應(yīng)用的就是非真空類型的絕熱處理。而非真空的絕熱就是通過熱導(dǎo)熱系數(shù)的絕熱材料開展。此種絕熱形式也是一種容積絕熱的方式,直接受絕熱材料厚度因素的影響,而材料的導(dǎo)熱系數(shù)的物理參數(shù)也直接影響其隔熱效果。熱隔離方式主要就是在局部器件的溫度影響,要加強(qiáng)控制,組織高溫器件以及相關(guān)物體產(chǎn)生的升溫影響,進(jìn)而保障整個元件的可靠性,延長設(shè)備的應(yīng)用壽命。在實踐中,因為溫度直接影響絕熱材料的傳熱性能,在一般狀況之下如果溫度上升就會增加絕熱材料。同時,溫度升高也會增加絕熱材料中的多孔介質(zhì)中的內(nèi)輻射。在應(yīng)用隔熱措施的時候,設(shè)備運行時間如果相對較長其實際的隔熱效果則就越差。同時,如果溫度升高就會導(dǎo)致多孔絕熱材料自身的總導(dǎo)熱系數(shù)的不斷增加。對此,必須要保障隔熱材料的整體性能,進(jìn)而提升應(yīng)用效果。
在集成電路的發(fā)展過程中,電子元件的密度與熱量密度也在持續(xù)增加,其散熱問題也逐漸凸顯。對此,高質(zhì)量的散熱以及冷卻方式可以保障電子元器件的性能指標(biāo)。在實踐中,要綜合具體的電子元器件的發(fā)熱功率、自身的特性,合理的應(yīng)用不同的散熱以及冷卻方式與手段,要綜合具體的應(yīng)用場合,合理選擇應(yīng)用方式與手段,進(jìn)而凸顯電子元器件的性能指標(biāo)。
-
電子器件
+關(guān)注
關(guān)注
2文章
590瀏覽量
32106 -
散熱
+關(guān)注
關(guān)注
3文章
511瀏覽量
31800
發(fā)布評論請先 登錄
相關(guān)推薦
評論