0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)的隨機(jī)森林算法簡介

汽車玩家 ? 來源:人工智能遇見磐創(chuàng) ? 作者:人工智能遇見磐創(chuàng) ? 2020-05-05 08:50 ? 次閱讀

幾個月前,我在悉尼參加了一個會議。會上fast.ai向我介紹了一門在線機(jī)器學(xué)習(xí)課程,那時候我根本沒注意。這周在Kaggle競賽尋找提高分?jǐn)?shù)的方法時,我又遇到了這門課程。我決定試一試。

這是我從第一堂課中學(xué)到的東西,這是一個1小時17分鐘的視頻,介紹了隨機(jī)森林。

課的主題是隨機(jī)森林,杰里米(講師)提供了一些基本信息以及使用Jupyter Notebook的提示和技巧。

Jeremy談到的一些重要的事情是,數(shù)據(jù)科學(xué)并不等同于軟件工程。在數(shù)據(jù)科學(xué)中,我們做的是設(shè)計模型。雖然軟件工程有自己的一套實踐,但數(shù)據(jù)科學(xué)也有自己的一套最佳實踐。

模型構(gòu)建和原型設(shè)計需要一個交互的環(huán)境,是一個迭代的過程。我們建立一個模型。然后,我們采取措施來改善它。重復(fù)直到我們對結(jié)果滿意為止。

隨機(jī)森林

我聽說過“隨機(jī)森林”這個詞,我知道它是現(xiàn)有的機(jī)器學(xué)習(xí)技術(shù)之一,但是老實說,我從來沒有想過要去了解它。我一直熱衷于更多地了解深度學(xué)習(xí)技術(shù)。

從這次演講中,我了解到隨機(jī)森林確實很棒。

它就像一個通用的機(jī)器學(xué)習(xí)技術(shù),既可以用于回歸,也可以用于分類。這意味著你可以使用隨機(jī)森林來預(yù)測股票價格以及對給定的醫(yī)療數(shù)據(jù)樣本進(jìn)行分類。

一般來說,隨機(jī)森林模型不會過擬合,即使它會,它也很容易防止過擬合。

對于隨機(jī)森林模型,不需要單獨(dú)的驗證集。

隨機(jī)森林只有一些統(tǒng)計假設(shè)。它也不假設(shè)你的數(shù)據(jù)是正態(tài)分布的,也不假設(shè)這些關(guān)系是線性的。

它只需要很少的特征工程。

因此,如果你是機(jī)器學(xué)習(xí)的新手,它可以是一個很好的起點。

其他概念

維數(shù)詛咒是一個概念,意思是你擁有的數(shù)據(jù)特征越多,數(shù)據(jù)點就會越分散。這意味著兩點之間的距離沒有意義。

Jeremy確信,在實踐中,情況并非如此,事實上,你的數(shù)據(jù)擁有的特征越多,對模型的訓(xùn)練效果就越好。

沒有免費(fèi)午餐定理是這樣一個概念:沒有一個模型可以完美地適用于任何類型的數(shù)據(jù)。

技巧和竅門

1.你可以在Jupyter Notebook中使用!來執(zhí)行bash命令,例如。

2.在Python 3.6中追加字符串的新方法。

3.不需要離開Jupyter notebook就可以查看python函數(shù)。在函數(shù)名前使用?獲取它的文檔。

4.如果你想閱讀源代碼,可以使用??在函數(shù)名稱前。

5.通過使用tofeather方法保存處理過的數(shù)據(jù)集,將數(shù)據(jù)集以存儲在RAM中的相同格式保存到磁盤。可以使用readfeather方法從保存的文件中讀取數(shù)據(jù)。注意,為了使用這些方法,你需要安feather-format庫。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機(jī)器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機(jī)器算法,AI 算法的知識,需要搭建一個學(xué)習(xí)環(huán)境,所以就在最近購買的華為云 Flexus X 實例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?113次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?301次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?536次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2515次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    LIBS結(jié)合機(jī)器學(xué)習(xí)算法的江西名優(yōu)春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對象,研究激光誘導(dǎo)擊穿光譜結(jié)合機(jī)器學(xué)習(xí)的茶葉鑒別方法。將茶葉茶,水?dāng)?shù)據(jù)融合可有效鑒別春茶采收期,且數(shù)據(jù)融合后表現(xiàn)出更好的穩(wěn)定性和魯棒性,LIBS結(jié)合機(jī)器
    的頭像 發(fā)表于 10-22 18:05 ?276次閱讀
    LIBS結(jié)合<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>的江西名優(yōu)春茶采收期鑒別

    【《時間序列與機(jī)器學(xué)習(xí)》閱讀體驗】+ 了解時間序列

    收到《時間序列與機(jī)器學(xué)習(xí)》一書,彩色印刷,公式代碼清晰,非常精美。感謝作者,感謝電子發(fā)燒友提供了一個讓我學(xué)習(xí)時間序列及應(yīng)用的機(jī)會! 前言第一段描述了編寫背景: 由此可知,這是一本關(guān)于時間序列進(jìn)行大數(shù)
    發(fā)表于 08-11 17:55

    【「時間序列與機(jī)器學(xué)習(xí)」閱讀體驗】全書概覽與時間序列概述

    本帖最后由 1653149838.791300 于 2024-8-12 20:18 編輯 [/td] [td]收到《時間序列與機(jī)器學(xué)習(xí)》這本書,很是欣喜,書籍內(nèi)容很詳實也是自己很感興趣
    發(fā)表于 08-07 23:03

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個重要分支,其目標(biāo)是通過讓計算機(jī)自動從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無需進(jìn)行明確的編程。本文將深入解讀幾種常見的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1221次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時代的到來,數(shù)據(jù)量的爆炸性增長對數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入探討機(jī)器
    的頭像 發(fā)表于 07-02 11:22 ?706次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個經(jīng)典數(shù)據(jù)集,在統(tǒng)計學(xué)習(xí)
    的頭像 發(fā)表于 06-27 08:27 ?1696次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典<b class='flag-5'>算法</b>與應(yīng)用

    森林環(huán)境監(jiān)控站應(yīng)用

    森林是地球上的“綠色肺臟”,對于維持生態(tài)平衡、凈化空氣、保持水土等方面具有不可替代的作用。森林環(huán)境監(jiān)控站,作為現(xiàn)代科技與自然生態(tài)相結(jié)合的產(chǎn)物,正逐漸在全球范圍內(nèi)發(fā)揮著其獨(dú)特的作用。 森林環(huán)境監(jiān)控站
    的頭像 發(fā)表于 04-23 16:11 ?328次閱讀

    機(jī)器學(xué)習(xí)怎么進(jìn)入人工智能

    ,人工智能已成為一個熱門領(lǐng)域,涉及到多個行業(yè)和領(lǐng)域,例如語音識別、機(jī)器翻譯、圖像識別等。 在編程中進(jìn)行人工智能的關(guān)鍵是使用機(jī)器學(xué)習(xí)算法,這是一類基于樣本數(shù)據(jù)和模型訓(xùn)練來進(jìn)行預(yù)測和判斷的
    的頭像 發(fā)表于 04-04 08:41 ?354次閱讀

    機(jī)器學(xué)習(xí)8大調(diào)參技巧

    今天給大家一篇關(guān)于機(jī)器學(xué)習(xí)調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機(jī)器學(xué)習(xí)例程中的基本步驟之一。該方法也稱為超參數(shù)優(yōu)化,需要搜索超參數(shù)的最佳配置以實現(xiàn)最佳性能。
    的頭像 發(fā)表于 03-23 08:26 ?653次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>8大調(diào)參技巧

    什么是隨機(jī)森林隨機(jī)森林的工作原理

    隨機(jī)森林使用名為“bagging”的技術(shù),通過數(shù)據(jù)集和特征的隨機(jī)自助抽樣樣本并行構(gòu)建完整的決策樹。雖然決策樹基于一組固定的特征,而且經(jīng)常過擬合,但隨機(jī)性對
    發(fā)表于 03-18 14:27 ?3662次閱讀
    什么是<b class='flag-5'>隨機(jī)</b><b class='flag-5'>森林</b>?<b class='flag-5'>隨機(jī)</b><b class='flag-5'>森林</b>的工作原理

    AI算法的本質(zhì)是模擬人類智能,讓機(jī)器實現(xiàn)智能化

    電子發(fā)燒友網(wǎng)報道(文/李彎彎)AI算法是人工智能領(lǐng)域中使用的算法,用于模擬、延伸和擴(kuò)展人的智能。這些算法可以通過機(jī)器學(xué)習(xí)、深度
    的頭像 發(fā)表于 02-07 00:07 ?5915次閱讀