0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

快速跟蹤下一個(gè)AI實(shí)施的方法

倩倩 ? 來(lái)源:新經(jīng)網(wǎng) ? 2020-03-15 16:04 ? 次閱讀


準(zhǔn)備和實(shí)施AI項(xiàng)目可能需要多年的時(shí)間。根據(jù)最新數(shù)據(jù),只有28%的受訪者表示第一年已經(jīng)超過(guò)了AI計(jì)劃階段。這是由于多種因素造成的,包括技術(shù)的相對(duì)成熟度(至少在不斷擴(kuò)展的行業(yè)用例中),涉及的復(fù)雜程度,例如廣泛的集成要求,有限的企業(yè)經(jīng)驗(yàn)和缺乏內(nèi)部技能集,關(guān)注點(diǎn)以及AI偏見(jiàn),治理,風(fēng)險(xiǎn)和合規(guī)性問(wèn)題,廣泛的變更管理要求等等。

無(wú)論是作為企業(yè)創(chuàng)新計(jì)劃的一部分,還是作為數(shù)字轉(zhuǎn)型計(jì)劃的一部分,都非常注重證明快速獲勝,長(zhǎng)期的AI項(xiàng)目可能會(huì)影響比其本身更大的計(jì)劃的聲譽(yù)。隨著CIO在產(chǎn)品管理方法中從“項(xiàng)目到產(chǎn)品”的轉(zhuǎn)變,這些冗長(zhǎng)的AI項(xiàng)目也可能會(huì)延遲創(chuàng)新的內(nèi)部或外部新產(chǎn)品發(fā)布。

為了迅速贏得這項(xiàng)重要的使能技術(shù)的勝利,并進(jìn)一步推動(dòng)在更廣泛的數(shù)字化轉(zhuǎn)型和創(chuàng)新計(jì)劃中投入更多資金的商業(yè)案例,CIO可以通過(guò)以下五種方式快速跟蹤其AI實(shí)施:

首先要做出的決定之一是建造還是購(gòu)買(mǎi)。雖然我們聽(tīng)到了很多有關(guān)自行構(gòu)建AI的平臺(tái),基礎(chǔ)架構(gòu)和框架的信息,但無(wú)名英雄通常是較為專(zhuān)業(yè)的專(zhuān)業(yè)AI供應(yīng)商,他們提供基于云的AI服務(wù),可以針對(duì)您的特定需求對(duì)其進(jìn)行快速培訓(xùn)和部署用例。建造或購(gòu)買(mǎi)的決定實(shí)際上是基于AI對(duì)您的組織作為未來(lái)核心能力的重要性。

例如,盡管每個(gè)金融服務(wù)公司都應(yīng)關(guān)注AI“擁有”與“沒(méi)有”之間日益顯現(xiàn)的數(shù)字和財(cái)務(wù)鴻溝(請(qǐng)參閱“ 對(duì)業(yè)務(wù)戰(zhàn)略和技術(shù)部署采用與直覺(jué)相反的方法 ”),但并不是每個(gè)公司需要在內(nèi)部構(gòu)建自己的算法。較小的商店可以非常有效地將更多精力放在將第三方AI技術(shù)納入其核心工作流程(例如貸款承銷(xiāo))中的業(yè)務(wù)收益和結(jié)果上,而無(wú)需建立自己的內(nèi)部AI / ML專(zhuān)業(yè)知識(shí)。

簡(jiǎn)單來(lái)說(shuō),這意味著ML行算法比每行具有100個(gè)屬性的1,000行數(shù)據(jù)的10,000行數(shù)據(jù)每行具有1,000個(gè)屬性。據(jù)馬克·斯坦的CEO,Underwrite.AI,公司專(zhuān)注于人工智能應(yīng)用的進(jìn)步,提供具有非線性,信用風(fēng)險(xiǎn)的動(dòng)態(tài)模型貸款,但是,它不是很簡(jiǎn)單,“越多越好”。數(shù)據(jù)類(lèi)型和數(shù)量必須與算法類(lèi)型匹配。深度學(xué)習(xí)需要大量記錄才能有效,而基于統(tǒng)計(jì)的算法則可以更好地處理較小的數(shù)據(jù)集。

如果您使用AI來(lái)建模人類(lèi)的決策模型,請(qǐng)獲取盡可能多的數(shù)據(jù),確保每個(gè)數(shù)據(jù)字段都有其價(jià)值,并在數(shù)據(jù)質(zhì)量和一致性方面給予高度重視。這可能很耗時(shí),尤其是從多個(gè)不同的來(lái)源進(jìn)行繪制時(shí),但是如果盡早進(jìn)行徹底的設(shè)計(jì),則可以避免很多昂貴的返工。

從技術(shù)上來(lái)說(shuō),調(diào)用AI API傳遞新數(shù)據(jù)集并獲得分?jǐn)?shù)很簡(jiǎn)單,但更困難的是變更管理和培訓(xùn),使業(yè)務(wù)分析師能夠最好地解釋這些分?jǐn)?shù)并將新流程納入日常工作中工作流程。

盡管某些形式的AI可能會(huì)產(chǎn)生自動(dòng)決策,例如基于信用歷史記錄對(duì)新貸款做出“是”或“否”決策,但ML算法通常也會(huì)提供更微妙的響應(yīng)。可能需要將此響應(yīng)與現(xiàn)有人工流程結(jié)合使用,以最好地決定貸款。作為示例,AI“得分”可以是從“ A”到“ D”和“ F”的等級(jí)?!?A”和“ F”可能是明確的“是”或“否”決策,可以完全自動(dòng)化以進(jìn)行實(shí)時(shí)決策,但是從“ B”到“ D”的等級(jí)可能仍然需要人工核保。

正如您花時(shí)間訓(xùn)練分析師使用新的財(cái)務(wù)模型以及如何最好地解釋模型的結(jié)果一樣,基于AI的結(jié)果也是如此。業(yè)務(wù)分析師可能需要花費(fèi)幾周甚至一個(gè)月的時(shí)間來(lái)觀察ML算法返回的結(jié)果,因此他們?cè)谌绾巫詈玫亟忉尫謹(jǐn)?shù)方面有一個(gè)基準(zhǔn)。如果您與AI供應(yīng)商合作,則該供應(yīng)商可以提供有關(guān)如何解釋結(jié)果以及如何培訓(xùn)員工以從新系統(tǒng)中獲得最大收益的指導(dǎo)。

斯坦因認(rèn)為,至關(guān)重要的是要了解AI不是魔術(shù)。這只是識(shí)別過(guò)去行為的模式的過(guò)程,可以使將來(lái)的預(yù)測(cè)更加準(zhǔn)確。只有在企業(yè)存在明確定義的問(wèn)題和易于理解的成功度量標(biāo)準(zhǔn)時(shí),它才能成功。例如,“我們需要降低按損失率衡量的貸款違約率”或“我們需要從當(dāng)前的32.5%率提高轉(zhuǎn)換率”,依此類(lèi)推。如果您不完全理解問(wèn)題,那么您也將不會(huì)理解解決方案。

由于每個(gè)AI實(shí)施都是獨(dú)特的,因此重要的是要以“假設(shè)和測(cè)試”的心態(tài)進(jìn)入每個(gè)項(xiàng)目,而不是將項(xiàng)目視為徹底的成功或失敗。通過(guò)在每個(gè)步驟進(jìn)行假設(shè)并將每個(gè)步驟的經(jīng)驗(yàn)帶入下一個(gè)迭代,您可以快速優(yōu)化您的AI部署,直到它成為可以提供有意義結(jié)果的可行解決方案為止。

雖然假設(shè)和測(cè)試方法會(huì)延長(zhǎng)項(xiàng)目部署時(shí)間,但好處是您會(huì)不斷調(diào)整解決方案,以吸收實(shí)際經(jīng)驗(yàn)教訓(xùn),以符合客戶和員工的要求,并持續(xù)轉(zhuǎn)向最引人注目的業(yè)務(wù)使您的解決方案具有可持續(xù)性的案例。

當(dāng)您開(kāi)始進(jìn)行初步的AI試驗(yàn),概念驗(yàn)證或MVP時(shí),請(qǐng)記住,您組織在企業(yè)范圍內(nèi)AI方面的未來(lái)愿景很可能是多種自動(dòng)化類(lèi)型的融合,從完全手動(dòng)的過(guò)程一直到最后,對(duì)于那些使用機(jī)器人過(guò)程自動(dòng)化(RPA)來(lái)開(kāi)發(fā)更復(fù)雜AI的人。通常是從頭開(kāi)始重新發(fā)明業(yè)務(wù)流程,然后在每個(gè)新步驟中應(yīng)用最佳工具完成工作的情況。只是將RPA或AI插入未更改的現(xiàn)有業(yè)務(wù)流程中,很可能會(huì)錯(cuò)過(guò)一切。

另一個(gè)重要因素是每個(gè)工具之間發(fā)生的切換。這可以是人對(duì)機(jī)器或機(jī)器對(duì)機(jī)器。通過(guò)優(yōu)化切換并使其快速,無(wú)縫和可靠,您可以進(jìn)一步增強(qiáng)未來(lái)的業(yè)務(wù)流程,使其與您的業(yè)務(wù)目標(biāo)和市場(chǎng)要求一樣具有成本效益和競(jìng)爭(zhēng)力。

好消息是,可以快速跟蹤AI的實(shí)現(xiàn),但這并不一定是使AI變得更聰明。這是關(guān)于做出正確的選擇,例如構(gòu)建與購(gòu)買(mǎi),對(duì)數(shù)據(jù)質(zhì)量(以及客戶)著迷,花足夠的時(shí)間進(jìn)行變更管理,及早介入業(yè)務(wù),采取“假設(shè)和測(cè)試”的方法,最終將多種自動(dòng)化技術(shù)結(jié)合到您的未來(lái)愿景中。

如果您的AI項(xiàng)目花費(fèi)大量時(shí)間,請(qǐng)耐心等待并保持原樣。您也許還可以利用此處的一些建議來(lái)幫助您將比賽快速推向終點(diǎn)。當(dāng)然,就像數(shù)字轉(zhuǎn)換一樣,這場(chǎng)比賽永遠(yuǎn)不會(huì)結(jié)束。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31463

    瀏覽量

    269847
  • 供應(yīng)商
    +關(guān)注

    關(guān)注

    0

    文章

    340

    瀏覽量

    20128
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1209

    瀏覽量

    24788
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    AI驅(qū)動(dòng)的人形機(jī)器人,成為激光雷達(dá)產(chǎn)業(yè)的下一個(gè)爆發(fā)點(diǎn)

    速騰和禾賽最新的財(cái)報(bào)電話會(huì)議上,都提到了不少機(jī)器人的應(yīng)用。禾賽在近期還預(yù)告了在明年1月的CES上,將會(huì)發(fā)布款全新的面向機(jī)器人領(lǐng)域的迷你3D激光雷達(dá)產(chǎn)品。 ? 從汽車(chē)到機(jī)器人,激光雷達(dá)產(chǎn)業(yè)找到了下一個(gè)增長(zhǎng)點(diǎn)? ? 機(jī)器人需要怎樣
    的頭像 發(fā)表于 12-23 09:07 ?960次閱讀

    Chiplet,半導(dǎo)體的下一個(gè)前沿?

    的服務(wù)器等切設(shè)備提供動(dòng)力。現(xiàn)代設(shè)備的個(gè)明顯趨勢(shì)是可用于專(zhuān)門(mén)任務(wù)的空間越來(lái)越小,要求這些設(shè)備在有限的物理限制內(nèi)有效處理多個(gè)工作負(fù)載。半導(dǎo)體行業(yè)正在經(jīng)歷重大轉(zhuǎn)型。隨著
    的頭像 發(fā)表于 12-30 10:53 ?150次閱讀
    Chiplet,半導(dǎo)體的<b class='flag-5'>下一個(gè)</b>前沿?

    商湯科技AI大模型助力智能家電革新升級(jí)

    從2016年到2022年,我國(guó)電視日均開(kāi)機(jī)率從70%下降到30%。電視如何重回家庭娛樂(lè)C位?AI成為智能電視下一個(gè)可以預(yù)見(jiàn)的未來(lái)。
    的頭像 發(fā)表于 11-19 10:25 ?307次閱讀

    給您下一個(gè)FPGA項(xiàng)目選擇Pluto XZU20五大理由!

    您的下一個(gè)FPGA項(xiàng)目從PlutoXZU20開(kāi)始1.屢獲殊榮PlutoXZU20憑借其卓越的設(shè)計(jì)和性能,在2024年北美嵌入式世界大會(huì)上被評(píng)為“最佳展品”。2.迷你外形PlutoXZU20外形超緊湊
    的頭像 發(fā)表于 11-19 01:01 ?215次閱讀
    給您<b class='flag-5'>下一個(gè)</b>FPGA項(xiàng)目選擇Pluto XZU20五大理由!

    AI 自動(dòng)跟蹤云臺(tái)驅(qū)動(dòng)板解決方案

    ,引言 在當(dāng)今科技飛速發(fā)展的時(shí)代,視頻監(jiān)控、攝影攝像等領(lǐng)域?qū)τ谠O(shè)備的智能化和自動(dòng)化要求越來(lái)越高。AI 自動(dòng)跟蹤云臺(tái)作為種能夠自動(dòng)跟蹤目標(biāo)
    的頭像 發(fā)表于 10-21 17:57 ?458次閱讀

    使用tSPI協(xié)議減少下一個(gè)多電機(jī)BLDC設(shè)計(jì)的布線

    電子發(fā)燒友網(wǎng)站提供《使用tSPI協(xié)議減少下一個(gè)多電機(jī)BLDC設(shè)計(jì)的布線.pdf》資料免費(fèi)下載
    發(fā)表于 09-26 10:40 ?0次下載
    使用tSPI協(xié)議減少<b class='flag-5'>下一個(gè)</b>多電機(jī)BLDC設(shè)計(jì)的布線

    能否在ESP結(jié)束之前通過(guò)串行端口停止傳入的UDP數(shù)據(jù)包的傳輸以解析下一個(gè)UDP數(shù)據(jù)包?

    丟棄在ESP完成之前不需要的數(shù)據(jù)包,以便通過(guò)串行端口發(fā)送它以接收下一個(gè)數(shù)據(jù)包, 如果沒(méi)有,我必須按順序讀取所有傳入的數(shù)據(jù)包,需要的和不需要的, 而且波特率不足,主機(jī)處理器開(kāi)銷(xiāo)大, 我能否在 ESP 結(jié)束之前通過(guò)串行端口停止傳入的 UDP 數(shù)據(jù)包的傳輸以解析下一個(gè) UDP
    發(fā)表于 07-16 06:18

    問(wèn)一下一個(gè)單片機(jī)的io口分別控制四個(gè)燈板該怎么設(shè)計(jì)電路?

    各位大佬,我想問(wèn)一下一個(gè)單片機(jī)的io口分別控制四個(gè)燈板該怎么設(shè)計(jì)電路,每個(gè)燈板上有四種不同類(lèi)型的燈,每種類(lèi)型的燈有兩個(gè)都通過(guò)三極管來(lái)驅(qū)動(dòng),那么每種類(lèi)型的燈都連接到同一個(gè)io口,有四塊板
    發(fā)表于 07-15 19:03

    個(gè)哪夠?是時(shí)候讓AI替你打工了

    大模型的下一個(gè)突破方向是什么?斯坦福大學(xué)教授吳恩達(dá)的答案是AI智能體工作流。在今年4月的次演講中,吳恩提到多個(gè)智能體起工作,分配任務(wù)并討論和辯論想法,能夠提出比單個(gè)智能體更好的解決
    的頭像 發(fā)表于 06-08 08:04 ?121次閱讀
    <b class='flag-5'>一</b><b class='flag-5'>個(gè)</b>哪夠?是時(shí)候讓<b class='flag-5'>一</b>群<b class='flag-5'>AI</b>替你打工了

    AI造夢(mèng)師,大模型正在孵化下一個(gè)黃金職業(yè)

    AI電影造夢(mèng)師這個(gè)領(lǐng)域,切都將是新的
    的頭像 發(fā)表于 05-28 09:20 ?1740次閱讀
    <b class='flag-5'>AI</b>造夢(mèng)師,大模型正在孵化<b class='flag-5'>下一個(gè)</b>黃金職業(yè)

    STM32F103如何讓ADC1每個(gè)通道轉(zhuǎn)換64次后換下一個(gè)通道在轉(zhuǎn)換64次?

    F103如何讓ADC1每個(gè)通道轉(zhuǎn)換64次后換下一個(gè)通道再轉(zhuǎn)換64次。 我想讓ADC1的每個(gè)通道采樣交流電壓信號(hào)做均方根處理。 例如: 通過(guò)PWM觸發(fā)ADC1的第一個(gè)通道采樣個(gè)周期的
    發(fā)表于 05-06 08:43

    單模光纖:下一個(gè)趨勢(shì)是什么?

    隨著對(duì)高速、可靠網(wǎng)絡(luò)的需求不斷增長(zhǎng),單模光纖電纜 (OS2) 作為面向未來(lái)的解決方案越來(lái)越受歡迎。隨著這趨勢(shì)的繼續(xù),新的數(shù)據(jù)中心將發(fā)現(xiàn) OS2 光纖是個(gè)更有吸引力的選擇。在本文中,我們將解釋單模
    的頭像 發(fā)表于 04-10 10:53 ?395次閱讀
    單模光纖:<b class='flag-5'>下一個(gè)</b>趨勢(shì)是什么?

    高速風(fēng)筒的下一個(gè)風(fēng)口是直發(fā)吹風(fēng)機(jī)?【其利天下技術(shù)】

    去年12月,戴森公司推出款宣稱“在吹干濕發(fā)的同時(shí)實(shí)現(xiàn)頭發(fā)拉直效果”的吹風(fēng)直發(fā)器,解決了‘先吹發(fā),后造型’的用戶痛點(diǎn),引發(fā)了行業(yè)內(nèi)外廣泛關(guān)注熱議。這款吹風(fēng)直發(fā)器在電吹風(fēng)行業(yè)中尚屬首例,確實(shí)是個(gè)創(chuàng)新型產(chǎn)品。這款被譽(yù)為“新物種”的
    的頭像 發(fā)表于 03-25 21:13 ?1240次閱讀
    高速風(fēng)筒的<b class='flag-5'>下一個(gè)</b>風(fēng)口是直發(fā)吹風(fēng)機(jī)?【其利天下技術(shù)】

    如何快速建立個(gè)PID控制程序

    回路輸出設(shè)置。選擇“模擬量”標(biāo)定為“單極20%偏移量”,即輸出信號(hào)的int數(shù)據(jù)范圍也是5530~27648,對(duì)應(yīng)電流為4~20mA,點(diǎn)擊“下一個(gè)”;
    發(fā)表于 03-20 09:39 ?1290次閱讀
    如何<b class='flag-5'>快速</b>建立<b class='flag-5'>一</b><b class='flag-5'>個(gè)</b>PID控制程序

    華為正接洽收購(gòu)高合汽車(chē) 目標(biāo)“打造下一個(gè)賽力斯”?

    據(jù)中工汽車(chē)網(wǎng)獲悉,2月27日,在片唱衰高合汽車(chē)的輿論浪潮下,網(wǎng)絡(luò)上又出現(xiàn)了華為正接洽收購(gòu)高合汽車(chē),并且目標(biāo)“打造下一個(gè)賽力斯”的消息。
    的頭像 發(fā)表于 02-28 14:14 ?960次閱讀
    華為正接洽收購(gòu)高合汽車(chē) 目標(biāo)“打造<b class='flag-5'>下一個(gè)</b>賽力斯”?