0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

特斯拉神經(jīng)網(wǎng)絡(luò)改進(jìn)很多,可探測(cè)識(shí)別更多物體

汽車玩家 ? 來(lái)源:網(wǎng)易科技 ? 作者:小小 ? 2019-12-25 09:54 ? 次閱讀

12月25日消息,據(jù)外媒報(bào)道,特斯拉部分車主已經(jīng)收到預(yù)覽版本的“FSD(全自動(dòng)駕駛)套件”,顯示這家電動(dòng)汽車制造商的神經(jīng)網(wǎng)絡(luò)有了長(zhǎng)足改進(jìn),可以探測(cè)和識(shí)別出更多常見(jiàn)物體,比如交通燈、垃圾桶以及車道標(biāo)志等。

特斯拉車主兼發(fā)燒友史蒂夫·哈梅爾(Steve Hamel)在收到最新2019.40.50軟件更新后,記錄了Model 3新增的部分功能,并分享了多張照片。

照片中顯示,特斯拉汽車上的神經(jīng)網(wǎng)絡(luò)現(xiàn)在能夠識(shí)別垃圾桶、車道線、道路上繪制的箭頭,以及交通燈不斷變化的顏色。停車標(biāo)志和道路標(biāo)記在最近的更新中也被準(zhǔn)確顯示出來(lái)。在性能方面,哈梅爾在Twitter上稱,Navigate on Autopilot等功能已經(jīng)得到改進(jìn)。

與Waymo和Cruise等自動(dòng)駕駛公司不同,特斯拉打算不使用激光雷達(dá)(LiDAR)。馬斯克解釋說(shuō),激光雷達(dá)在太空中很有用,但用在普通汽車上卻顯得相當(dāng)愚蠢。在他看來(lái),只需一套攝像頭和一個(gè)神經(jīng)網(wǎng)絡(luò)足以教會(huì)一支車隊(duì)如何自動(dòng)駕駛。

特斯拉始終致力于通過(guò)該公司車隊(duì)收集的數(shù)據(jù)來(lái)改進(jìn)其輔助駕駛軟件Autopilot和全自動(dòng)駕駛套件。然后,這些數(shù)據(jù)被輸入到公司的神經(jīng)網(wǎng)絡(luò)中,后者會(huì)根據(jù)輸入的數(shù)據(jù)進(jìn)行改進(jìn)。

過(guò)去,特斯拉對(duì)其神經(jīng)網(wǎng)絡(luò)的官方功能始終保持沉默,直到幾天前,特斯拉首席執(zhí)行官埃隆·馬斯克(Elon Musk)在Twitter上表示,即將發(fā)布的更新軟件版本2019.40.50中將包含預(yù)覽版“全自動(dòng)駕駛套件”。

這次更新增加了許多新功能,如Driver Profiles、Tesla Arcade Games、Trax以及Tesla Theater等。但除了這些改進(jìn)之外,此次更新還讓人們對(duì)全自動(dòng)駕駛功能“先睹為快”。

當(dāng)然,特斯拉的新可視化功能只展現(xiàn)了該公司完整自動(dòng)駕駛解決方案的冰山一角。向該公司車隊(duì)發(fā)布最新的視覺(jué)圖像表明,特斯拉全自動(dòng)駕駛功能改進(jìn)在過(guò)去幾個(gè)月里取得了很大成果。

然而,看到特斯拉的電動(dòng)汽車識(shí)別出道路上原本無(wú)處不在的物體,表明Autopilot和全自動(dòng)駕駛功能正走在通往真正自動(dòng)駕駛的正確道路上。畢竟,這些看得見(jiàn)的東西已經(jīng)給人留下深刻印象,支持這套系統(tǒng)的后端技術(shù)可能更加先進(jìn)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 特斯拉
    +關(guān)注

    關(guān)注

    66

    文章

    6346

    瀏覽量

    126939
  • 激光雷達(dá)
    +關(guān)注

    關(guān)注

    969

    文章

    4044

    瀏覽量

    190610
  • 自動(dòng)駕駛
    +關(guān)注

    關(guān)注

    785

    文章

    13964

    瀏覽量

    167305
收藏 0人收藏

    評(píng)論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)有何用途 卷積神經(jīng)網(wǎng)絡(luò)通常運(yùn)用在哪里

    和應(yīng)用場(chǎng)景。 圖像識(shí)別 圖像識(shí)別是卷積神經(jīng)網(wǎng)絡(luò)最廣泛的應(yīng)用之一。CNN能夠自動(dòng)學(xué)習(xí)圖像中的特征,實(shí)現(xiàn)對(duì)圖像的分類、識(shí)別和分析。以下是一些具體的應(yīng)用場(chǎng)景: 1.1
    的頭像 發(fā)表于 07-11 14:43 ?2766次閱讀

    怎么對(duì)神經(jīng)網(wǎng)絡(luò)重新訓(xùn)練

    重新訓(xùn)練神經(jīng)網(wǎng)絡(luò)是一個(gè)復(fù)雜的過(guò)程,涉及到多個(gè)步驟和考慮因素。 引言 神經(jīng)網(wǎng)絡(luò)是一種強(qiáng)大的機(jī)器學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等領(lǐng)域。然而,隨著時(shí)間的推移,數(shù)據(jù)分布可
    的頭像 發(fā)表于 07-11 10:25 ?553次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?696次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型的分類有哪些

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs)是一種模擬人腦神經(jīng)元網(wǎng)絡(luò)的計(jì)算模型,它在許多領(lǐng)域,如圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理、預(yù)測(cè)分析等有著廣泛
    的頭像 發(fā)表于 07-05 09:13 ?1444次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡(jiǎn)稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡(jiǎn)稱RNN)實(shí)際上是同一個(gè)概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?941次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和反向傳播神經(jīng)網(wǎng)絡(luò)區(qū)別在哪

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應(yīng)用,如語(yǔ)音識(shí)別、圖像識(shí)別、自然語(yǔ)言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問(wèn)題,如容易陷入局部最優(yōu)解、訓(xùn)練時(shí)間長(zhǎng)、對(duì)初始權(quán)重敏感等。為了解決這些問(wèn)題,研究者們
    的頭像 發(fā)表于 07-04 09:51 ?582次閱讀

    如何設(shè)計(jì)人臉識(shí)別神經(jīng)網(wǎng)絡(luò)

    人臉識(shí)別技術(shù)是一種基于人臉特征信息進(jìn)行身份識(shí)別的技術(shù),廣泛應(yīng)用于安全監(jiān)控、身份認(rèn)證、智能門禁等領(lǐng)域。神經(jīng)網(wǎng)絡(luò)是實(shí)現(xiàn)人臉識(shí)別的關(guān)鍵技術(shù)之一,本文將介紹如何設(shè)計(jì)人臉
    的頭像 發(fā)表于 07-04 09:20 ?784次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應(yīng)用,如語(yǔ)音識(shí)別、圖像識(shí)別、自然語(yǔ)言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問(wèn)題,如容易陷入局部最優(yōu)解、訓(xùn)練時(shí)間長(zhǎng)、對(duì)初始權(quán)重敏感等。為了解決這些問(wèn)題,研究者們
    的頭像 發(fā)表于 07-03 11:00 ?897次閱讀

    bp神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)

    Network)有相似之處,但它們之間還是存在一些關(guān)鍵的區(qū)別。 一、引言 神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元結(jié)構(gòu)的計(jì)算模型,它由大量的神經(jīng)元(或稱為節(jié)點(diǎn))組成,這些神經(jīng)元通過(guò)權(quán)重連接在一起
    的頭像 發(fā)表于 07-03 10:14 ?987次閱讀

    神經(jīng)網(wǎng)絡(luò)算法的結(jié)構(gòu)有哪些類型

    神經(jīng)網(wǎng)絡(luò)算法是深度學(xué)習(xí)的基礎(chǔ),它們?cè)谠S多領(lǐng)域都有廣泛的應(yīng)用,如圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等。神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)有很多種類型,每種類型都有其
    的頭像 發(fā)表于 07-03 09:50 ?594次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的原
    的頭像 發(fā)表于 07-02 14:44 ?859次閱讀

    神經(jīng)網(wǎng)絡(luò)建模的適用范圍有哪些

    自然圖像、醫(yī)學(xué)圖像、衛(wèi)星圖像等。神經(jīng)網(wǎng)絡(luò)可以識(shí)別圖像中的物體、場(chǎng)景、人臉等,并可以用于圖像檢索、圖像分割、圖像標(biāo)注等任務(wù)。 語(yǔ)音識(shí)別 神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-02 11:40 ?730次閱讀

    神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別領(lǐng)域的應(yīng)用日益廣泛。神經(jīng)網(wǎng)絡(luò)以其強(qiáng)大的特征提取和分類能力,為圖像識(shí)別帶來(lái)了革命性的進(jìn)步。本文將詳細(xì)介紹
    的頭像 發(fā)表于 07-01 14:19 ?848次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機(jī)器學(xué)習(xí)領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運(yùn)作方式,通過(guò)復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)實(shí)現(xiàn)信息的處理、存儲(chǔ)和傳遞。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,各種神經(jīng)網(wǎng)絡(luò)架構(gòu)被提出并廣泛應(yīng)用
    的頭像 發(fā)表于 07-01 14:16 ?906次閱讀

    基于毫米波雷達(dá)的手勢(shì)識(shí)別神經(jīng)網(wǎng)絡(luò)

    預(yù)處理后的信號(hào)輸入卷積神經(jīng)網(wǎng)絡(luò)時(shí)域卷積網(wǎng)絡(luò)(CNNTCN)模型,提取時(shí)空特征,并通過(guò)分類評(píng)估識(shí)別性能。實(shí)驗(yàn)結(jié)果表明,該方法在特定領(lǐng)域的識(shí)別中實(shí)現(xiàn)了98.2%的準(zhǔn)確率,并在不同的
    發(fā)表于 05-23 12:12

    電子發(fā)燒友

    中國(guó)電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會(huì)員交流學(xué)習(xí)
    • 獲取您個(gè)性化的科技前沿技術(shù)信息
    • 參加活動(dòng)獲取豐厚的禮品