數(shù)字濾波器
在信號(hào)處理領(lǐng)域中,對(duì)于信號(hào)處理的實(shí)時(shí)性、快速性的要求越來越高。而在許多信息處理過程中,如對(duì)信號(hào)的過濾、檢測(cè)、預(yù)測(cè)等,都要廣泛地用到濾波器。
其中數(shù)字濾波器具有穩(wěn)定性高、精度高、設(shè)計(jì)靈活、實(shí)現(xiàn)方便等許多突出的優(yōu)點(diǎn),避免了模擬濾波器所無法克服的電壓漂移、溫度漂移和噪聲等問題,因而隨著數(shù)字技術(shù)的發(fā)展,用數(shù)字技術(shù)實(shí)現(xiàn)濾波器的功能越來越受到人們的注意和廣泛的應(yīng)用。其中有限沖激響應(yīng)(FIR)濾波器能在設(shè)計(jì)任意幅頻特性的同時(shí)保證嚴(yán)格的線性相位特性,在語音、數(shù)據(jù)傳輸中應(yīng)用非常廣泛。
在信號(hào)處理中,濾波器的設(shè)計(jì)是非常重要的一個(gè)環(huán)節(jié)。濾波器的作用是什么?濾波器的作用就是把噪音去掉,把感興趣的信號(hào)從大量信號(hào)中提取出來。
濾波器分兩大類,一種是模擬(ANALOG)濾波器,另外一種是數(shù)字(DIGITAL)濾波器。模擬(ANALOG)濾波器是由模擬電路構(gòu)成,而數(shù)字(DIGITAL)濾波器是由數(shù)字處理集成電路模塊(DSP)和相應(yīng)的軟件構(gòu)成。
數(shù)字(DIGITAL)濾波器是可編程的,所以相對(duì)于模擬(ANALOG)濾波器有很多優(yōu)點(diǎn)。其中最大的優(yōu)點(diǎn)是通過改變程序或改變程序變量就可設(shè)計(jì)出不同特點(diǎn)的濾波器,而且數(shù)字濾波器可以精確的處理低頻率信號(hào)。
前面我們提到,什么是濾波器?濾波器就是把噪音去掉,把感興趣的信號(hào),或者說我們感興趣的頻率信號(hào),從大量信號(hào)中提取出來。這如果要用數(shù)學(xué)語言來表達(dá),那么就是用一個(gè)期望的頻率特征函數(shù)H(f)去乘以輸入信號(hào)頻率X(f)。我們知道,輸入信號(hào)是有時(shí)間性的,它是隨著時(shí)間的改變而改變。就是說信號(hào)是發(fā)生在時(shí)間空間(時(shí)空,TIME DOMAIN)里的,那么,“期望的頻率特征函數(shù)H(f)去乘以輸入信號(hào)頻率X(f)”這個(gè)數(shù)學(xué)表達(dá)在時(shí)間空間里是怎樣的一個(gè)表達(dá)式呢?根據(jù)傅立葉變換定律,“期望的頻率特征函數(shù)H(f)去乘以輸入信號(hào)頻率X(f)”在時(shí)間空間里就是“這個(gè)期望的頻率特征函數(shù)H(f)在時(shí)間空間里的表達(dá)式h(t)去和輸入信號(hào)x(t)做一個(gè)卷積”。
具體什么是卷積?用一句經(jīng)典的話概括:卷積就是各個(gè)時(shí)刻的輸入信號(hào)各自乘以相對(duì)應(yīng)的衰減或增幅,然后疊加在一起作為輸出信號(hào)輸出,這里的衰減或增幅就對(duì)應(yīng)與系統(tǒng)的單位沖激響應(yīng)?!訖?quán)疊加。
物理意義:
卷積的重要的物理意義是:一個(gè)函數(shù)(如:?jiǎn)挝豁憫?yīng))在另一個(gè)函數(shù)(如:輸入信號(hào))上的加權(quán)疊加。
詳細(xì)的卷積原理可參考《信號(hào)與系統(tǒng)》里面的介紹,里面舉了非常詳細(xì)的例子介紹。如果有時(shí)間,我也會(huì)查閱資料給大家簡(jiǎn)單介紹一下。
卷積的應(yīng)用
用一個(gè)模板和一幅圖像進(jìn)行卷積,對(duì)于圖像上的一個(gè)點(diǎn),讓模板的原點(diǎn)和該點(diǎn)重合,然后模板上的點(diǎn)和圖像上對(duì)應(yīng)的點(diǎn)相乘,然后各點(diǎn)的積相加,就得到了該點(diǎn)的卷積值。對(duì)圖像上的每個(gè)點(diǎn)都這樣處理。由于大多數(shù)模板都是對(duì)稱的,所以模板不旋轉(zhuǎn)。卷積是一種積分運(yùn)算,用來求兩個(gè)曲線重疊區(qū)域面積??梢钥醋骷訖?quán)求和,可以用來消除噪聲、特征增強(qiáng)。
FIR濾波器是非遞歸型濾波器的簡(jiǎn)稱,又叫有限長(zhǎng)單位沖激響應(yīng)濾波器。帶有常系數(shù)的FIR濾波器是一種LTI(線性時(shí)不變)數(shù)字濾波器。沖激響應(yīng)是有限的意味著在濾波器中沒有發(fā)反饋。長(zhǎng)度為N的FIR輸出對(duì)應(yīng)于輸入時(shí)間序列x(n)餓關(guān)系由一種有限卷積和的形式給出,具體形式如下:
直接形式FIR濾波器圖解:
輸入信號(hào)是有時(shí)間性的,隨著時(shí)間的改變而改變,F(xiàn)IR濾波器最終的輸出是各個(gè)時(shí)刻的輸入乘以相應(yīng)的權(quán)重(系數(shù)),然后進(jìn)行疊加,輸出。
FIR數(shù)字濾波器“移動(dòng)平均數(shù)”為例子:
“移動(dòng)平均數(shù)”就是按我們事先設(shè)定的信號(hào)個(gè)數(shù)將輸入信號(hào)加以平均。譬如,如果我們按每4個(gè)信號(hào)就做一次平均,那么這個(gè)4點(diǎn)的“移動(dòng)平均數(shù)”濾波器就如下圖所示:
下圖是經(jīng)過11點(diǎn)和51點(diǎn)“移動(dòng)平均數(shù)”濾波器過濾的信號(hào)圖:
“移動(dòng)平均數(shù)”濾波器的頻率響應(yīng)如下圖所示:
如上圖所示,隨著點(diǎn)數(shù)的增加,滾降(ROLLOFF)變陡了,但對(duì)旁瓣(sidelobe,衰減部分)的高低影響不大。但是如果我們考慮對(duì)濾波器的每個(gè)系數(shù)采用不同的權(quán)重(加權(quán)),而不是像“移動(dòng)平均數(shù)”濾波器那樣,用相同的權(quán)重(1/4,對(duì)4點(diǎn)“移動(dòng)平均數(shù)”濾波器來說),那么可以期待旁瓣的大小會(huì)大大的降低。
對(duì)系數(shù)采用不同權(quán)重的濾波器,我們可以用下面的數(shù)學(xué)公式來表達(dá):
這就是FIR數(shù)字濾波器的一般表達(dá)式。
下面我們以設(shè)計(jì)一個(gè)低通濾波器(LPF)為例,來說明FIR數(shù)字濾波器窗函數(shù)法的設(shè)計(jì)要點(diǎn)。
假設(shè)采樣頻率為Fs,濾波器的截止(CUT-OFF)頻率為Fco,濾波器的長(zhǎng)度為Nfir,那么用圖形表示出來就如下圖所示:
假設(shè)Nfir=128,Nco=13 注:Fco=Fs*(Nco/Nfir),h(t)的計(jì)算為:
那么這個(gè)低通濾波器的有限沖激響應(yīng)就如下圖所示:
這樣我們就設(shè)計(jì)出了一個(gè)FIR低通濾波器。為了檢測(cè)這個(gè)濾波器的性能,我們用信號(hào)發(fā)生器產(chǎn)生包含從直流到頻率為采樣頻率的一組信號(hào),如下圖所示:
我們把這組信號(hào)與前面設(shè)計(jì)的FIR低通濾波器做卷積運(yùn)算,并將結(jié)果(輸出)進(jìn)行快速傅立葉變換(FFT),得到的頻率響應(yīng)如下圖所示:
除了以上方法獲得加權(quán)系數(shù)(抽頭系數(shù))外,還可以通過MATLAB獲取。
總之,F(xiàn)IR濾波器的目的是濾除不需要的成分,留下需要的成分,如何留下就是通過加權(quán)疊加的方式實(shí)現(xiàn)。
濾波器除了低通外,還有高通,帶通及帶阻。
參考文獻(xiàn):http://blog.sina.com.cn/s/blog_74504f8f0100p5ub.html
FIR濾波器設(shè)計(jì)方法:
直接窗函數(shù)設(shè)計(jì)方法
等波紋設(shè)計(jì)方法
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論