0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一種直接測量運(yùn)算放大器輸入差分電容的方法

亞德諾半導(dǎo)體 ? 2019-10-31 09:12 ? 次閱讀

53卷第4期,201910

A Direct Method of Measuring Op Amp Input Differential Capacitance

一種直接測量運(yùn)算放大器輸入差分電容的方法

Glen BriseboisArthur Alfred Roxas

簡介

輸入電容可能會成為高阻抗和高頻運(yùn)算放大器(op amp)應(yīng)用的一個主要規(guī)格。值得注意的是,當(dāng)光電二極管的結(jié)電容較小時,運(yùn)算放大器的輸入電容會成為噪聲和帶寬問題的主導(dǎo)因素。運(yùn)算放大器的輸入電容和反饋電阻在放大器的響應(yīng)中產(chǎn)生一個極點(diǎn),從而影響穩(wěn)定性并增加較高頻率下的噪聲增益。因此,穩(wěn)定性和相位裕量可能會降低,輸出噪聲可能會增加。實際上,以前的一些CDM(差模電容)測量技術(shù)依據(jù)的是高阻抗反相電路、穩(wěn)定性分析以及噪聲分析。這些方法可能會非常繁瑣。

在諸如運(yùn)算放大器之類的反饋放大器中,總有效輸入電容由CDM與負(fù)輸入共模電容(或?qū)Φ氐?/span>CCM)并聯(lián)組成。CDM難以測量的原因之一是運(yùn)算放大器的主要任務(wù)是防止兩個輸入不相關(guān)。與測量CDM的難度相比,直接測量對地的正輸入共模電容CCM+相對容易一些。在運(yùn)算放大器的同相引腳上放置一個較大的串聯(lián)電阻并施加正弦波或噪聲源,就可以使用網(wǎng)絡(luò)分析儀或頻譜分析儀來測量由運(yùn)算放大器輸入電容而產(chǎn)生的-3 dB的頻率響應(yīng)。假定CCM+CCM相同,特別是對于電壓反饋放大器。但是,這些年來,測量CDM變得日益困難;運(yùn)算放大器的固有特性會迫使其輸入相等,從而自舉CDM,因此所使用的各種不同的技術(shù)都無法令人滿意。當(dāng)輸入被強(qiáng)制分開并進(jìn)行電流測量時,輸出將試圖進(jìn)行對抗。-檢測CDM的傳統(tǒng)方法是間接測量,該方法依賴于相位裕度的降低,且因并聯(lián)使用CCM等其他電容而變得更復(fù)雜。

我們希望待測運(yùn)算放大器能夠像客戶平時的用法一樣,在閉環(huán)條件下正常運(yùn)行并執(zhí)行功能。建議的一種可行方法是分離輸入并進(jìn)行輸出削波,但是這可能會使內(nèi)部電路無法工作(取決于運(yùn)算放大器拓?fù)洌?,因此實測電容可能無法反映實際工作電容。在這種方法中,不會對輸入進(jìn)行過度分離,以避免輸入級的非線性以及過多的輸出擺幅或削波。本文將介紹一種簡單直接的CDM測量方法。

1.直接測量LTspice中的CDM阻抗。繪制V(r)/I(R1)曲線以獲得阻抗。在本例中,在1 MHz頻率下,-89.996°時Z19.89437kΩ (10(85.97/20)),利用公式C = 1/(2π × Z × Freq),Z正好為8 pF

測量CDM的新方法

作者決定只使用增益為1的緩沖電路,并使用電流源激勵輸出和反相輸入。輸出和反相輸入將僅在運(yùn)算放大器允許的范圍內(nèi)變動。在低頻下,輸出的變動很小,因此通過CDM的電流會很小。而在過高頻率下,測試可能會無效,況且結(jié)果也沒用。但在中頻下,運(yùn)算放大器的增益帶寬會下降,但不至于太低,輸出變動仍可提供足夠大的電壓激勵和可測量的通過CDM的電流。

LTspice?的本底噪聲幾乎不受限制,因此可以進(jìn)行簡單的測試仿真,如圖1所示。當(dāng)發(fā)現(xiàn)該技術(shù)在LTspice中相當(dāng)準(zhǔn)確有效后,接下來的問題就是“我可否在現(xiàn)實世界中獲得足夠的SNR以進(jìn)行良好的測量?”

該相位角幾乎等于-90°,這表明阻抗是容性的。2 pF共模電容不會破壞測量,因為CCM不在路徑中,且1/(2 × π × Freq × CCM+) >> 1 Ω。

挑戰(zhàn):找到合適的設(shè)備和實際測試設(shè)置

如圖1所示,將2 kΩ電阻串聯(lián)在運(yùn)算放大器的輸出端,以將激勵從電壓源轉(zhuǎn)換為電流源。這將允許節(jié)點(diǎn)“r”中存在小電壓(它不會與在運(yùn)算放大器的同相引腳中所看到的電壓相差太遠(yuǎn)),并將導(dǎo)致小電流流入待測CDM的輸入端之間。當(dāng)然,現(xiàn)在的輸出電壓很小(由待測器件(DUT)進(jìn)行緩沖),而且CDM中的電流也很?。ㄔ诒痉抡嬷袨?/span>57 nA),因此在工作臺上使用1 Ω電阻進(jìn)行測量將很困難。LTspice.acLTspice.tran仿真沒有電阻噪聲,但現(xiàn)實世界中的1 Ω電阻具有130 pA/Hz的噪聲,從我們預(yù)期的57 nA電容電流中只能產(chǎn)生57 nV信號。進(jìn)一步的仿真表明,用50Ω或1 kΩ代替R1不會導(dǎo)致在目標(biāo)帶寬范圍內(nèi)的頻率下流入CCM+的損耗電流過大。為了獲得比簡單電阻更好的電流測量技術(shù),可使用跨阻放大器(TIA)代替R1。TIA輸入會連接到運(yùn)算放大器的同相引腳,在該引腳上需要電流,同時電壓固定為虛地以消除CCM中的電流。事實上,這正是Keysight/Agilent HP4192A等四端口阻抗分析儀的實現(xiàn)方式。HP4192A可以在5 Hz13 MHz的頻率范圍內(nèi)進(jìn)行阻抗測量。市場上采用相同阻抗測量技術(shù)的一些新設(shè)備包括具有10 Hz120 MHz范圍的E4990A阻抗分析儀和具有20 Hz2 MHz范圍的精密LCR表(如Keysight E4980A)。

如下面圖2測試電路所示,由于阻抗分析儀內(nèi)部的TIA,運(yùn)算放大器的同相引腳保持虛地狀態(tài)。正因如此,CCM+的兩個端子都被視為處于地電位,因此不會影響測量。DUTCDM兩端產(chǎn)生的小電流將流經(jīng)TIA的反饋電阻Rr,然后由內(nèi)部電壓表進(jìn)行測量。

2.CDM測試電路。

任何使用自動平衡電橋1阻抗測量方法的四端口設(shè)備都是測量CDM的合適選擇。它們設(shè)計為從內(nèi)部振蕩器產(chǎn)生正弦波,該內(nèi)部振蕩器以零為中心點(diǎn),具有正負(fù)擺幅,可用于雙電源供電。如果運(yùn)算放大器DUT由單電源供電,則應(yīng)調(diào)整偏置功能,以使信號不會發(fā)生對地削波。圖3中使用了HP4192A,并顯示了與DUT的詳細(xì)連接。

3.CDM直接測量方法的測試設(shè)置。

4顯示了確切的測試設(shè)置,以使電路板和連線對CDM的寄生電容貢獻(xiàn)極小。任何通用電路板均可用于低速運(yùn)算放大器,而高速運(yùn)算放大器則需要更嚴(yán)格的PCB板布局。垂直接地的銅分隔板能確保輸入端和輸出端看不到與DUT CDM平行的其他場路徑。

4.HP4192A設(shè)置電路板演示。右側(cè)為通過2 kΩ的激勵和電壓回讀。所用DUT是貼于LB2223實驗板上的8引腳SO封裝的LT1792TIA位于HP4192A內(nèi)部的左側(cè)。

結(jié)果與討論

首先,在測量電路板的板電容時沒有使用DUT。圖4所示電路板的測量條件是16 fF電容且沒有DUT。這是一個相當(dāng)小的電容,可以忽略不計,因為通常CDM的預(yù)期值為幾百至幾千fF。

Most JFET and CMOS input op amps were measurable using this new CDM measurement使用這種新的CDM測量技術(shù),可以測量大多數(shù)JFETCMOS輸入型運(yùn)算放大器。為了說明該方法,以測量低噪聲精度JFET運(yùn)算放大器LT1792為例。下表列出了在一定頻率范圍內(nèi)的阻抗(Z)、相位角(θ)、電抗XSCDM的計算值。當(dāng)相位角為-90°時,阻抗表現(xiàn)為純?nèi)菪浴?/span>


1.電源為±15 V時,LT1792在不同頻率下的阻抗測量

頻率

Z (kΩ)

θ

XS (kΩ)

CS = CDM =
1/(2
× π × XS × Freq) (pF)

500 kHz

33

-89°

-32.9

9.7

600 kHz

27

-90°

-26.9

9.8

700 kHz

22.6

-90°

-22.6

10

800 kHz

19.65

-90°

-19.7

10.1

900 kHz

17.4

-90°

-17.4

10.2

1 MHz

15.64

-89.9°

-15.6

10.2

2 MHz

7.76

-89.8°

-7.76

10.25

3 MHz

5.1

-90°

-5.1

10.4

4 MHz

3.74

-90°

-3.74

10.6

5 MHz

2.92

-90°

-2.92

10.9

上述表1給出了在500 kHz5 MHz頻率范圍內(nèi)的測量結(jié)果。在該頻率范圍內(nèi)的相位接近于純?nèi)菪裕ㄏ辔唤菫?/span>-89°至-90°)。同時,電抗XS決定了總輸入阻抗,即ZXS。CDM的計算平均值約為10.2 pF。最高測量頻率為5 MHz,因為該器件帶寬僅可達(dá)5.6 MHz。更低頻率下的結(jié)果變得非相干。推測這是由于運(yùn)算放大器的行為使輸出電壓降低,CDM電流迅速消減,同時XS阻抗在低頻時變大。

還應(yīng)在每個階躍頻率處檢查運(yùn)算放大器的輸出,以確保它不會被阻抗分析儀產(chǎn)生的信號過驅(qū)。來自HP4192A的該信號的幅度可在0.1 V1.1 V范圍內(nèi)調(diào)節(jié),這剛好足以在運(yùn)算放大器的輸出中產(chǎn)生擺動,并使反相輸入引腳中的電壓電平略微發(fā)生變動。圖5顯示了頻率為800 kHz時,運(yùn)算放大器輸出端的峰峰值無失真信號(綠色信號)為28 mV。2.76 V峰峰值幅度(1 V rms)的黃色信號是直接從分析儀的振蕩輸出端口探測得的。公平起見,可以任意決定不允許輸出失真,不論是對DUT還是對HP4192A檢波器。盡管該設(shè)置相對來說并不受探頭效應(yīng)的影響,但在獲取阻抗和相位的實際數(shù)據(jù)時已經(jīng)將探頭移除。

5.HP4192AOsc”輸出端口和運(yùn)算放大器輸出引腳探測到的輸出。

我們進(jìn)行了在不同電源電壓下測量CDM的測試。CDM對電源和共模電壓的依賴性會隨運(yùn)算放大器的不同而有所不同;不同的拓?fù)浜?a target="_blank">晶體管類型預(yù)計會導(dǎo)致高壓電源和低壓電源不同的結(jié)寄生效應(yīng)。表2給出了電源穩(wěn)定在±5 V范圍內(nèi)LT1792的結(jié)果。CDM的測量平均值為9.2 pF,與采用±15 V電源時的結(jié)果10 pF相當(dāng)接近。因此,可以得出結(jié)論,LT1792CDM不會隨電源電壓的改變而發(fā)生顯著變化。這與其CCM形成了鮮明的對比,后者會隨電源電壓發(fā)生顯著變化。

2.電源為±5 V時,LT1792在不同頻率下的阻抗測量

頻率

Z (kΩ)

θ

XS (kΩ)

CS = CDM (pF)

500 kHz

37

-90°

-37

8.6

600 kHz

30

-91°

-30

8.8

700 kHz

25.3

-91°

-25.2

9

800 kHz

22

-91°

-22

9

900 kHz

19.5

-91°

-19.5

9

1 MHz

17.5

-91°

-17.5

9.1

2 MHz

8.62

-92°

-8.62

9.2

3 MHz

5.6

-93°

-5.6

9.5

4 MHz

4.07

-94°

-4.07

9.8

5 MHz

3.14

-94°

-3.14

10.1

同時,雙極性輸入運(yùn)算放大器幾乎與其FET同類產(chǎn)品一樣簡單。但是,由于它們與CDM電流并聯(lián),因此它們的高輸入偏置電流和電流噪聲較為明顯。此外,雙極性差分對輸入內(nèi)在的固有差分電阻RDM也與CDM并聯(lián)。表3以低噪聲精密放大器ADA4004為例,顯示了其阻抗測量。顯然,相位并不表示純?nèi)菪孕袨?,因為它遠(yuǎn)離-90°。盡管4 MHz、5 MHz10 MHz頻率非常接近,但并聯(lián)等效阻抗RC模型將適合本例,以便能夠從其他電阻中提取出CDM。因此,表3中顯示了在一定頻率范圍內(nèi)的并聯(lián)電導(dǎo)GP、電納BPCDM的計算值,其中假定CP等于CDM。

3.電源為±15 V時,ADA4004在整個頻率范圍內(nèi)的阻抗測量

頻率

Z (kΩ)

θ

GP (μS)

BP (μS)

CP = CDM =
BP/(2
× π × Freq) (pF)

500 kHz

29.4

-36°

27.5

20

6.4

600 kHz

27.2

-41°

27.6

24.1

6.4

700 kHz

25.3

-45.4°

27.6

28

6.4

800 kHz

23.5

-49°

27.9

32

6.4

900 kHz

22

-52°

28

35.7

6.3

1 MHz

20.7

-54.3°

28.1

39.3

6.3

2 MHz

12

-72.6°

24.9

79.4

6.3

3 MHz

7.8

-79.2°

24

126

6.7

4 MHz

5.8

-81.8°

24.5

171

6.8

5 MHz

4.7

-83.5°

24.2

212.7

6.8

10 MHz

2.5

-86°

28

319.5

6.3

根據(jù)表3中的結(jié)果,可以估算出ADA4004CDM約為6.4 pF。結(jié)果還表明,在表3所示的整個頻率范圍內(nèi),CDM具有相當(dāng)大的并聯(lián)電導(dǎo)GP,并非純?nèi)菪?/span>CDM。測量顯示該雙極性運(yùn)算放大器的實際輸入差分電阻約為40 kΩ (1/25 μS)

附注:我們嘗試了對其他類型運(yùn)算放大器進(jìn)行測量,例如零漂移運(yùn)算放大器(LTC2050)和高速雙極性運(yùn)算放大器(LT6200)。結(jié)果非相干,推測原因是零漂移運(yùn)算放大器中的開關(guān)偽現(xiàn)像以及高速雙極性運(yùn)算放大器中的過大電流噪聲。

參考結(jié)論

測量CDM 并不困難。需要注意的一點(diǎn)是,HP4192A以幅度和角度報告阻抗。電容讀數(shù)假定為簡單的串聯(lián)RC或并聯(lián)RC,而運(yùn)算放大器的輸入阻抗可能要復(fù)雜得多。電容讀數(shù)不應(yīng)僅使用表面標(biāo)稱值。每個運(yùn)算放大器均具有各自的獨(dú)特情況。輸入阻抗由容性電抗主導(dǎo)的頻率范圍可能因設(shè)計而異。輸入級設(shè)計、所用器件和工藝、米勒效應(yīng)以及封裝都可能對差分輸入阻抗及其測量產(chǎn)生很大的整體貢獻(xiàn)。我們對JFET輸入運(yùn)算放大器和雙極性輸入運(yùn)算放大器進(jìn)行了測量,展示了CDM結(jié)果以及雙極性輸入運(yùn)算放大器的RDM結(jié)果。

References

參考文獻(xiàn)

1 Gustaaf Sutorius.阻抗測量的挑戰(zhàn)和解決方案”,是德科技,20143月。

致謝

Glen Brisebois感謝Brian Hamilton提出這一挑戰(zhàn),感謝Aaron SchultzPaul Henneuse的支持以及Henry SurtihadiKaung Win、Barry HarveyRaj Ramchandani的意見。

Arthur Roxas感謝Paul Blanchard、Matt Duff、Jess EspirituKristina Fortunado提供與Glen一起完成該項目的機(jī)會。

作者簡介

Glen Brisebois是硅谷ADI公司信號調(diào)理部門的一名應(yīng)用工程師。他曾就讀于加拿大阿爾伯塔大學(xué),獲得物理學(xué)和電氣工程學(xué)士學(xué)位。他曾與特拉普派教徒和加爾都西會教徒一起隱修數(shù)年,但無法停止對電路的思考?,F(xiàn)在,他擁有幸福的婚姻和孩子的陪伴。他從事大量電路相關(guān)工作,但有時也會提倡ADC。他在EDN雜志上發(fā)表的文章《高阻抗傳感器的信號調(diào)理》榮獲2006年最佳論文獎。聯(lián)系方式:glen.brisebois@analog.com。

作者簡介

Arthur Alfred Roxas是線性產(chǎn)品和解決方案部門的產(chǎn)品應(yīng)用工程師。他于2017年加入ADI公司。在此之前,他曾在一家日本半導(dǎo)體公司從事設(shè)計和布局工作。他畢業(yè)于馬尼拉市大學(xué),擁有電子通信工程學(xué)士學(xué)位,并獲得馬布亞科技學(xué)院(位于馬尼拉)電子工程專業(yè)碩士學(xué)位,主修微電子。聯(lián)系方式:arthur.roxas@analog.com。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    運(yùn)算放大器和微控制器的結(jié)合應(yīng)用

    一種帶有特殊耦合電路及反饋的放大器,其輸出信號可以是輸入信號加、減或微分、積分等數(shù)學(xué)運(yùn)算的結(jié)果。運(yùn)算放大器的工作原理主要包括
    的頭像 發(fā)表于 12-18 17:53 ?332次閱讀

    如何使用運(yùn)算放大器進(jìn)行模擬信號處理

    運(yùn)算放大器一種高增益、輸入、單端輸出的集成電路元件,能夠?qū)?b class='flag-5'>輸入信號進(jìn)行
    的頭像 發(fā)表于 12-18 17:31 ?349次閱讀

    運(yùn)算放大器輸入輸出特性 運(yùn)算放大器的噪聲分析與抑制

    輸入阻抗非常高,通常在兆歐姆級別。 輸入偏置電流 :由于制造過程中的不完美,運(yùn)算放大器的兩個輸入端存在微小的電流差異,稱為輸入偏置電流。高質(zhì)
    的頭像 發(fā)表于 12-18 15:45 ?339次閱讀

    運(yùn)算放大器振蕩的解決辦法

    不穩(wěn)定,或者出現(xiàn)大量過沖和振鈴。我們可以通過減少該節(jié)點(diǎn)的雜散電容來獲得定的改善,其可以最小化這種連接的電路板線路面積。使用某個特定的運(yùn)算放大器時,輸入
    發(fā)表于 09-13 08:23

    運(yùn)算放大器的輸出電壓怎么計算

    的計算方法至關(guān)重要。 1. 運(yùn)算放大器的工作原理 運(yùn)算放大器一種具有兩個輸入端(反相輸入端和同
    的頭像 發(fā)表于 09-03 09:55 ?1529次閱讀
    <b class='flag-5'>運(yùn)算放大器</b>的輸出電壓怎么計算

    儀表放大器和普通運(yùn)算放大器有何不同?通常有哪些特點(diǎn)?

    Amplifier,簡稱IA)是一種高增益、高精度、低噪聲、低漂移的放大器,主要用于測量微弱信號,如生物電信號、壓力信號等。它由三個運(yùn)算放大器(Operational Amplifi
    的頭像 發(fā)表于 08-06 14:23 ?1336次閱讀

    集成運(yùn)算放大器特性、參數(shù)和應(yīng)用

    引言 集成運(yùn)算放大器(Operational Amplifier,簡稱Op-Amp)是一種具有高增益、高輸入阻抗、低輸出阻抗的放大器。它廣泛應(yīng)用于模擬電路設(shè)計中,如信號
    的頭像 發(fā)表于 08-01 14:16 ?1148次閱讀

    集成運(yùn)算放大器的基本原理、特性及應(yīng)用

    集成運(yùn)算放大器(Operational Amplifier,簡稱Op-Amp)是一種具有高增益、高輸入阻抗、低輸出阻抗的耦合放大器。它廣泛應(yīng)用于模擬電路設(shè)計中,如信號
    的頭像 發(fā)表于 08-01 14:11 ?3867次閱讀

    放大電路在集成運(yùn)算放大器中間級中的應(yīng)用

    直接影響到整個放大器的性能。 放大電路
    的頭像 發(fā)表于 08-01 11:30 ?591次閱讀

    運(yùn)算放大器輸入電阻怎么算

    運(yùn)算放大器(Operational Amplifier,簡稱Op-Amp)是一種具有高增益、高輸入阻抗、低輸出阻抗的模擬集成電路。在許多電子電路中,運(yùn)算放大器被廣泛應(yīng)用于信號
    的頭像 發(fā)表于 07-12 11:47 ?2135次閱讀

    集成運(yùn)算放大器一種具有什么耦合放大器

    的特點(diǎn)使得它成為現(xiàn)代電子系統(tǒng)設(shè)計中不可或缺的重要組成部分。 集成運(yùn)算放大器一種耦合放大器,其工作原理是通過耦合電容、電感或變壓器等元件將輸入
    的頭像 發(fā)表于 02-25 15:21 ?1430次閱讀

    運(yùn)算放大器輸出電壓與輸入電壓關(guān)系

    和系統(tǒng)中。在本文中,將詳細(xì)探討運(yùn)算放大器的輸出電壓與輸入電壓之間的關(guān)系。 首先,了解運(yùn)算放大器的基本原理非常重要。個典型的運(yùn)算放大器
    的頭像 發(fā)表于 02-23 15:31 ?5574次閱讀

    公式+案例 搞定同相運(yùn)算放大器

     同相運(yùn)算放大器一種運(yùn)算放大器,其輸出電壓和輸入電壓同相。反饋是通過個電阻從運(yùn)算放大器的輸出
    發(fā)表于 02-15 11:02 ?1.5w次閱讀
    公式+案例 搞定同相<b class='flag-5'>運(yùn)算放大器</b>

    運(yùn)算放大器的工作原理 運(yùn)算放大器的計算公式

    的工作原理和計算公式。 、運(yùn)算放大器的工作原理: 運(yùn)算放大器由多個晶體管、電阻和電容器等元件組成。它的輸入端有兩個
    的頭像 發(fā)表于 01-30 14:18 ?4450次閱讀

    運(yùn)算放大器為什么要采用放大?

    運(yùn)算放大器采用放大是因為差分放大器具有以下幾個優(yōu)點(diǎn)
    的頭像 發(fā)表于 01-04 18:16 ?1102次閱讀