0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于序列信息來(lái)預(yù)測(cè)潛在的抗癌多肽的深度學(xué)習(xí)方法

倩倩 ? 來(lái)源:lq ? 作者:中國(guó)科學(xué)院網(wǎng)站 ? 2019-09-20 15:13 ? 次閱讀

癌癥是人類(lèi)健康最致命的殺手,在全球范圍內(nèi)每年造成數(shù)百萬(wàn)人的死亡。傳統(tǒng)的物理和化學(xué)方法,包括靶向治療、化療和放射治療等醫(yī)療實(shí)踐中常見(jiàn)的治療手段,在一定程度上能殺死病變癌細(xì)胞,但是同時(shí)也會(huì)殺死大量正常的細(xì)胞,帶來(lái)嚴(yán)重的副作用。這些治療手段費(fèi)用昂貴且預(yù)后效果不佳,迫切需要開(kāi)發(fā)新的定向清除癌細(xì)胞,治療癌癥的有效方法。


圖:抗癌多肽數(shù)據(jù)集中各氨基酸組分及預(yù)測(cè)模型性能表現(xiàn)

抗癌多肽(anticancer peptides,ACP),一種長(zhǎng)度通常小于50氨基酸的陽(yáng)離子型多肽的發(fā)現(xiàn)為癌癥治療開(kāi)辟了新前景。ACP多發(fā)現(xiàn)自抗菌多肽(antimicrobial peptides, AMP)中,具有很多優(yōu)良的特性,包括高特異性、廣譜性、安全性、易于合成和定制、成本低廉等??拱┒嚯目梢蕴禺愋缘亟Y(jié)合癌細(xì)胞的陰離子細(xì)胞膜分子,而對(duì)正常細(xì)胞沒(méi)有影響。因此,它們可以選擇性地殺死癌細(xì)胞,而不帶來(lái)副作用。多年來(lái),ACP療法在臨床的不同階段被廣泛探索和應(yīng)用,但是只有少數(shù)被最終用于臨床治療。ACP的鑒定高度受限于實(shí)驗(yàn)室,昂貴且周期漫長(zhǎng)。計(jì)算預(yù)測(cè)的方法在幫助篩選、發(fā)現(xiàn)和預(yù)測(cè)抗癌多肽中的作用越來(lái)越迫切和明顯。

中國(guó)科學(xué)院新疆理化技術(shù)研究所研究人員首次開(kāi)發(fā)和提出了基于序列信息來(lái)預(yù)測(cè)潛在的抗癌多肽的深度學(xué)習(xí)方法。首先,研究人員基于現(xiàn)有的研究,整理構(gòu)建了用于機(jī)器學(xué)習(xí)的抗癌多肽數(shù)據(jù)集,其中,正樣本為實(shí)驗(yàn)驗(yàn)證的ACP,負(fù)樣本為不具有抗癌活性的AMP。然后,保留氨基酸殘基組分和位置信息的高效多肽序列特征提取技術(shù)被提出,將生物序列信息轉(zhuǎn)化為數(shù)字特征。最后,基于長(zhǎng)短時(shí)記憶模型的深度學(xué)習(xí)模型被構(gòu)建和訓(xùn)練以預(yù)測(cè)新型ACP。嚴(yán)格的實(shí)驗(yàn)結(jié)果表明,所開(kāi)發(fā)的方法具有高準(zhǔn)確性、魯棒性,可以作為相關(guān)生物醫(yī)學(xué)研究的有效工具。

該工作以ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation 為題,于近日發(fā)表于Molecular Therapy-Nucleic Acids,第一作者為新疆理化所研究生易海成,指導(dǎo)老師為研究員尤著宏。該工作得到國(guó)家自然科學(xué)基金優(yōu)秀青年科學(xué)基金和中科院項(xiàng)目的支持。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    時(shí)空引導(dǎo)下的時(shí)間序列自監(jiān)督學(xué)習(xí)框架

    考慮各個(gè)序列之間的關(guān)系。因此,本文提出的方法更適合作為時(shí)空預(yù)測(cè)領(lǐng)域的預(yù)訓(xùn)練模型。下面為大家詳細(xì)介紹一下這篇文章。 摘要 相關(guān)時(shí)間序列分析在許多現(xiàn)實(shí)行業(yè)中扮演著重要的角色。為進(jìn)一步的下游
    的頭像 發(fā)表于 11-15 11:41 ?257次閱讀
    時(shí)空引導(dǎo)下的時(shí)間<b class='flag-5'>序列</b>自監(jiān)督<b class='flag-5'>學(xué)習(xí)</b>框架

    如何使用RNN進(jìn)行時(shí)間序列預(yù)測(cè)

    時(shí)間序列預(yù)測(cè)在金融、氣象、銷(xiāo)售預(yù)測(cè)等領(lǐng)域有著廣泛的應(yīng)用。傳統(tǒng)的時(shí)間序列分析方法,如ARIMA和指數(shù)平滑,雖然在某些情況下表現(xiàn)良好,但在處理非
    的頭像 發(fā)表于 11-15 09:45 ?300次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在時(shí)間序列預(yù)測(cè)中的應(yīng)用

    時(shí)間序列預(yù)測(cè)是數(shù)據(jù)分析中的一個(gè)重要領(lǐng)域,它涉及到基于歷史數(shù)據(jù)預(yù)測(cè)未來(lái)值。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,長(zhǎng)短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)因其在處理
    的頭像 發(fā)表于 11-13 09:54 ?622次閱讀

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?215次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的<b class='flag-5'>方法</b>

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】時(shí)間序列信息提取

    個(gè)重要環(huán)節(jié),目標(biāo)是從給定的時(shí)間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析和預(yù)測(cè)任務(wù)。 特征工程(Feature Engineering)是將數(shù)據(jù)轉(zhuǎn)換為更好地表示潛在問(wèn)題的特征,
    發(fā)表于 08-17 21:12

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 時(shí)間序列信息提取

    本人有些機(jī)器學(xué)習(xí)的基礎(chǔ),理解起來(lái)一點(diǎn)也不輕松,加油。 作者首先說(shuō)明了時(shí)間序列信息提取是時(shí)間序列分析的一個(gè)重要環(huán)節(jié),目標(biāo)是從給定的時(shí)間序列數(shù)
    發(fā)表于 08-14 18:00

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 了解時(shí)間序列

    學(xué)習(xí)方法對(duì)該序列數(shù)據(jù)進(jìn)行分析,可以得到結(jié)論或預(yù)測(cè)估計(jì),因此時(shí)間序列分析的用途是非常多的,比如: 可以反映社會(huì)經(jīng)濟(jì)現(xiàn)象的發(fā)展變化過(guò)程,描述現(xiàn)象的發(fā)展?fàn)顟B(tài)和結(jié)果。 可以研究社會(huì)經(jīng)濟(jì)現(xiàn)象的發(fā)
    發(fā)表于 08-11 17:55

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】全書(shū)概覽與時(shí)間序列概述

    的應(yīng)用也很廣泛,用機(jī)器學(xué)習(xí)為時(shí)間分析帶來(lái)新的可能性。人們往往可以通過(guò)過(guò)往的時(shí)間序列數(shù)據(jù)來(lái)預(yù)測(cè)未來(lái),在各行各業(yè)中都有很好的應(yīng)用與發(fā)展前景。 時(shí)間序列
    發(fā)表于 08-07 23:03

    利用Matlab函數(shù)實(shí)現(xiàn)深度學(xué)習(xí)算法

    在Matlab中實(shí)現(xiàn)深度學(xué)習(xí)算法是一個(gè)復(fù)雜但強(qiáng)大的過(guò)程,可以應(yīng)用于各種領(lǐng)域,如圖像識(shí)別、自然語(yǔ)言處理、時(shí)間序列預(yù)測(cè)等。這里,我將概述一個(gè)基本的流程,包括環(huán)境設(shè)置、數(shù)據(jù)準(zhǔn)備、模型設(shè)計(jì)、訓(xùn)
    的頭像 發(fā)表于 07-14 14:21 ?2224次閱讀

    深度學(xué)習(xí)中的時(shí)間序列分類(lèi)方法

    時(shí)間序列分類(lèi)(Time Series Classification, TSC)是機(jī)器學(xué)習(xí)深度學(xué)習(xí)領(lǐng)域的重要任務(wù)之一,廣泛應(yīng)用于人體活動(dòng)識(shí)別、系統(tǒng)監(jiān)測(cè)、金融
    的頭像 發(fā)表于 07-09 15:54 ?921次閱讀

    深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)習(xí)方法綜述

    應(yīng)用中往往難以實(shí)現(xiàn)。因此,無(wú)監(jiān)督學(xué)習(xí)深度學(xué)習(xí)中扮演著越來(lái)越重要的角色。本文旨在綜述深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)
    的頭像 發(fā)表于 07-09 10:50 ?735次閱讀

    深度學(xué)習(xí)與nlp的區(qū)別在哪

    深度學(xué)習(xí)和自然語(yǔ)言處理(NLP)是計(jì)算機(jī)科學(xué)領(lǐng)域中兩個(gè)非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文將介紹深度學(xué)習(xí)與NLP的區(qū)別。 深度
    的頭像 發(fā)表于 07-05 09:47 ?933次閱讀

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.35】如何用「時(shí)間序列與機(jī)器學(xué)習(xí)」解鎖未來(lái)?

    捕捉復(fù)雜非線(xiàn)性模式的場(chǎng)景中顯得力不從心。 將時(shí)間序列的分析與預(yù)測(cè)用于大規(guī)模的數(shù)據(jù)生產(chǎn)一直存在諸多困難。 在這種背景下,結(jié)合機(jī)器學(xué)習(xí),特別是深度學(xué)習(xí)
    發(fā)表于 06-25 15:00

    深度學(xué)習(xí)在時(shí)間序列預(yù)測(cè)的總結(jié)和未來(lái)方向分析

    2023年是大語(yǔ)言模型和穩(wěn)定擴(kuò)散的一年,時(shí)間序列領(lǐng)域雖然沒(méi)有那么大的成就,但是卻有緩慢而穩(wěn)定的進(jìn)展。Neurips、ICML和AAAI等會(huì)議都有transformer結(jié)構(gòu)(BasisFormer
    的頭像 發(fā)表于 02-24 08:26 ?836次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>在時(shí)間<b class='flag-5'>序列</b><b class='flag-5'>預(yù)測(cè)</b>的總結(jié)和未來(lái)方向分析

    請(qǐng)問(wèn)初學(xué)者要怎么快速掌握FPGA的學(xué)習(xí)方法?

    對(duì)于初學(xué)者 FPGA的編程語(yǔ)言是什么? FPGA芯片的基礎(chǔ)結(jié)構(gòu)也不了解. FPGA開(kāi)發(fā)工具的名稱(chēng)和使用方法都不知道. 要學(xué)的很多啊,請(qǐng)問(wèn)有什么自學(xué)的學(xué)習(xí)方法么?
    發(fā)表于 01-02 23:01