0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于YOLOv3的紅綠燈檢測(cè)識(shí)別(Python源碼可直接運(yùn)行)

丫丫119 ? 來源:未知 ? 作者:肖冰 ? 2019-09-18 15:43 ? 次閱讀

在實(shí)習(xí)的期間為公司寫的紅綠燈檢測(cè),基于YOLOv3的訓(xùn)練好的權(quán)重,不需要自己重新訓(xùn)練,只需要調(diào)用yolov3.weights,可以做到視頻或圖片中紅綠燈的檢測(cè)識(shí)別。

自動(dòng)檢測(cè)識(shí)別效果

1.紅燈檢測(cè)

2.綠燈檢測(cè)

python源碼

"""
Class definition of YOLO_v3 style detection model on image and video
"""

import colorsys
import os
from timeit import default_timer as timer
import cv2
import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw

from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model
import collections


class YOLO(object):
  _defaults = {
    "model_path": ''model_data/yolo.h5'',
    "anchors_path": ''model_data/yolo_anchors.txt'',
    "classes_path": ''model_data/coco_classes.txt'',
    "score" : 0.3,
    "iou" : 0.35,
    "model_image_size" : (416, 416),
    "gpu_num" : 1,
  }

  @classmethod
  def get_defaults(cls, n):
    if n in cls._defaults:
      return cls._defaults[n]
    else:
      return "Unrecognized attribute name ''" + n + "''"

  def __init__(self, **kwargs):
    self.__dict__.update(self._defaults) # set up default values
    self.__dict__.update(kwargs) # and update with user overrides
    self.class_names = self._get_class()
    self.anchors = self._get_anchors()
    self.sess = K.get_session()
    self.boxes, self.scores, self.classes = self.generate()

  def _get_class(self):
    classes_path = os.path.expanduser(self.classes_path)
    with open(classes_path) as f:
      class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

  def _get_anchors(self):
    anchors_path = os.path.expanduser(self.anchors_path)
    with open(anchors_path) as f:
      anchors = f.readline()
    anchors = [float(x) for x in anchors.split('','')]
    return np.array(anchors).reshape(-1, 2)

  def generate(self):
    model_path = os.path.expanduser(self.model_path)
    assert model_path.endswith(''.h5''), ''Keras model or weights must be a .h5 file.''

    # Load model, or construct model and load weights.
    num_anchors = len(self.anchors)
    num_classes = len(self.class_names)
    is_tiny_version = num_anchors==6 # default setting
    try:
      self.yolo_model = load_model(model_path, compile=False)
    except:
      self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) 
        if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
      self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
    else:
      assert self.yolo_model.layers[-1].output_shape[-1] == 
        num_anchors/len(self.yolo_model.output) * (num_classes + 5), 
        ''Mismatch between model and given anchor and class sizes''

    print(''{} model, anchors, and classes loaded.''.format(model_path))

    # Generate colors for drawing bounding boxes.
    hsv_tuples = [(x / len(self.class_names), 1., 1.)
           for x in range(len(self.class_names))]
    self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
    self.colors = list(
      map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
        self.colors))
    np.random.seed(10101) # Fixed seed for consistent colors across runs.
    np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
    np.random.seed(None) # Reset seed to default.

    # Generate output tensor targets for filtered bounding boxes.
    self.input_image_shape = K.placeholder(shape=(2, ))
    if self.gpu_num>=2:
      self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
    boxes, scores, classes = yolo_, self.input_image_shape,
        score_threshold=self.score, iou_threshold=self.iou)
    return boxes, scores, classes

  def getColorList(self):
    dict = collections.defaultdict(list)

    # 紅色
    lower_red = np.array([156, 43, 46])
    upper_red = np.array([180, 255, 255])
    color_list = []
    color_list.append(lower_red)
    color_list.append(upper_red)
    dict[''red''] = color_list

    # 紅色2
    lower_red = np.array([0, 43, 46])
    upper_red = np.array([10, 255, 255])
    color_list = []
    color_list.append(lower_red)
    color_list.append(upper_red)
    dict[''red2''] = color_list

    # 橙色
    lower_orange = np.array([11, 43, 46])
    upper_orange = np.array([25, 255, 255])
    color_list = []
    color_list.append(lower_orange)
    color_list.append(upper_orange)
    dict[''orange''] = color_list

    # 黃色
    lower_yellow = np.array([26, 43, 46])
    upper_yellow = np.array([34, 255, 255])
    color_list = []
    color_list.append(lower_yellow)
    color_list.append(upper_yellow)
    dict[''yellow''] = color_list

    # 綠色
    lower_green = np.array([35, 43, 46])
    upper_green = np.array([77, 255, 255])
    color_list = []
    color_list.append(lower_green)
    color_list.append(upper_green)
    dict[''green''] = color_list
    return dict

  def get_color(self,frame):
    print(''go in get_color'')
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    maxsum = -100
    color = None
    color_dict = self.getColorList()
    score = 0
    type = ''black''
    for d in color_dict:
      mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1])
      # print(cv2.inRange(hsv, color_dict[d][0], color_dict[d][1]))
      #cv2.imwrite(''images/triffic/'' + f + d + ''.jpg'', mask)
      binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
      binary = cv2.dilate(binary, None, iterations=2)
      img, cnts, hiera = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
      sum = 0
      for c in cnts:
        sum += cv2.contourArea(c)

      if sum > maxsum:
        maxsum = sum
        color = d
      if sum > score:
        score = sum
        type = d
    return type



  def detect_image(self, image,path):
    print(''class'',self._get_class())

    start = timer()

    if self.model_image_size != (None, None):
      assert self.model_image_size[0]%32 == 0, ''Multiples of 32 required''
      assert self.model_image_size[1]%32 == 0, ''Multiples of 32 required''
      boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
    else:
      new_image_size = (image.width - (image.width % 32),
               image.height - (image.height % 32))
      boxed_image = letterbox_image(image, new_image_size)
    image_data = np.array(boxed_image, dtype=''float32'')

    print(image_data.shape)
    image_data /= 255.
    image_data = np.expand_dims(image_data, 0) # Add batch dimension.


    out_boxes, out_scores, out_classes = self.sess.run(
      [self.boxes, self.scores, self.classes],
      feed_dict={
        self.yolo_model.input: image_data,
        self.input_image_shape: [image.size[1], image.size[0]],
        K.learning_phase(): 0
      })

    print(''Found {} boxes for {}''.format(len(out_boxes), ''img''))

    font = ImageFont.truetype(font=''font/FiraMono-Medium.otf'',
          size=np.floor(3e-2 * image.size[1] + 0.5).astype(''int32''))
    thickness = (image.size[0] + image.size[1]) // 300
    thickness = 5
    print(''thickness'',thickness)
    print(''out_classes'',out_classes)
    my_class = [''traffic light'']
    imgcv = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)

    for i, c in reversed(list(enumerate(out_classes))):
      predicted_class = self.class_names[c]
      print(''predicted_class'',predicted_class)
      if predicted_class not in my_class:
        continue
      box = out_boxes[i]
      score = out_scores[i]

      label = ''{} {:.2f}''.format(predicted_class, score)

      draw = ImageDraw.Draw(image)

      label_size = draw.textsize(label, font)

      top, left, bottom, right = box
      top = max(0, np.floor(top + 0.5).astype(''int32''))
      left = max(0, np.floor(left + 0.5).astype(''int32''))
      bottom = min(image.size[1], np.floor(bottom + 0.5).astype(''int32''))
      right = min(image.size[0], np.floor(right + 0.5).astype(''int32''))
      print(label, (left, top), (right, bottom))
      img2 = imgcv[top:bottom, left:right]
      color = self.get_color(img2)
      cv2.imwrite(''images/triffic/''+path+str(i) + ''.jpg'', img2)
      if color== ''red'' or color == ''red2'':
        cv2.rectangle(imgcv, (left, top), (right, bottom), color=(0, 0, 255),
               lineType=2, thickness=8)
        cv2.putText(imgcv, ''{0} {1:.2f}''.format(color, score),
              (left, top - 15),
              cv2.FONT_HERSHEY_SIMPLEX,
              1.2, (0, 0, 255), 4,
              cv2.LINE_AA)
      elif color == ''green'':
        cv2.rectangle(imgcv, (left, top), (right, bottom), color=(0, 255, 0),
               lineType=2, thickness=8)
        cv2.putText(imgcv, ''{0} {1:.2f}''.format(color, score),
              (left, top - 15),
              cv2.FONT_HERSHEY_SIMPLEX,
              1.2, (0, 255, 0), 4,
              cv2.LINE_AA)
      else:
        cv2.rectangle(imgcv, (left, top), (right, bottom), color=(255, 0, 0),
               lineType=2, thickness=8)
        cv2.putText(imgcv, ''{0} {1:.2f}''.format(color, score),
              (left, top - 15),
              cv2.FONT_HERSHEY_SIMPLEX,
              1.2, (255, 0, 0), 4,
              cv2.LINE_AA)

      print(imgcv.shape)
    end = timer()
    print(end - start)
    return imgcv

  def close_session(self):
    self.sess.close()

def detect_img(yolo, img_path,fname):
  img = Image.open(img_path)
  import time
  t1 = time.time()

  img = yolo.detect_image(img,fname)
  print(''time: {}''.format(time.time() - t1))
  return img
  #yolo.close_session()

if __name__ == ''__main__'':
  yolo = YOLO()
  video_full_path = ''images/triffic.mp4''
  output = ''images/res.avi''
  cap = cv2.VideoCapture(video_full_path)
  cap.set(cv2.CAP_PROP_POS_FRAMES, 1) # 設(shè)置要獲取的幀號(hào)

  fourcc = cv2.VideoWriter_fourcc(*''XVID'')
  fps = cap.get(cv2.CAP_PROP_FPS)
  size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))

  out = cv2.VideoWriter(output, fourcc, fps, size)
  ret = True
  count = 0
  while ret :
    count+=1
    ret, frame = cap.read()
    if not ret :
      print(''結(jié)束'')
      break
    image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB))
    image = yolo.detect_image(image,''pic'')
    out.write(image)

  cap.release()
  out.release()
  cv2.destroyAllWindows()
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 檢測(cè)識(shí)別
    +關(guān)注

    關(guān)注

    0

    文章

    9

    瀏覽量

    7248
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4805

    瀏覽量

    84920
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    Labview 編程紅綠燈

    剛開始學(xué)習(xí)Labview,寫了個(gè)紅綠燈的程試,因?yàn)椴辉趺磿?huì)C,C++,所以直接用編,請(qǐng)高手指點(diǎn)下.
    發(fā)表于 08-11 09:41

    紅綠燈小程序

    `初學(xué),搞個(gè)紅綠燈小程序。勿拍。。。`
    發(fā)表于 08-30 15:02

    交通紅綠燈

    本帖最后由 samuergao 于 2014-7-3 14:13 編輯 交通燈,并顯示當(dāng)前時(shí)間和倒計(jì)時(shí),包含了單條路遇到人行道的紅綠燈,還有十字路口的紅綠燈,大家?guī)涂纯从械母倪M(jìn)沒有。
    發(fā)表于 07-03 12:12

    紅綠燈問題求助?

    求做個(gè)紅綠燈 就一個(gè)路的紅綠燈
    發(fā)表于 10-22 10:53

    【分享】紅綠燈的設(shè)計(jì)

    本帖最后由 elecfans跑堂 于 2015-9-16 10:49 編輯 紅綠燈 的設(shè)計(jì),大神看看
    發(fā)表于 09-15 22:37

    紅綠燈

    `功能:1實(shí)現(xiàn)倒計(jì)時(shí)2實(shí)現(xiàn)黃燈閃爍3實(shí)現(xiàn)人行道紅綠燈提示 `
    發(fā)表于 12-28 14:55

    基于51單片機(jī)的紅綠燈設(shè)計(jì)

    這是一個(gè)基于51單片機(jī)的紅綠燈設(shè)計(jì),可以實(shí)現(xiàn)紅綠燈的功能,同時(shí)還有特殊情況是單向通行。
    發(fā)表于 01-06 14:30 ?67次下載

    005——帶時(shí)間顯示的紅綠燈

    005——帶時(shí)間顯示的紅綠燈.........................
    發(fā)表于 04-28 09:49 ?18次下載

    紅綠燈源程序

    紅綠燈源程序,感興趣的小伙伴們可以看看。
    發(fā)表于 06-17 15:42 ?33次下載

    紅綠燈的供電狀況解析

    很多紅綠燈則是“黑戶”(并不代表違規(guī)哦),它們的電則是從附近“借”來的,來源也是五花八門:附近的路燈、企業(yè)、公變臺(tái)區(qū)等等……這些紅綠燈,供電公司一般是不知道它的運(yùn)行情況的
    的頭像 發(fā)表于 12-04 16:53 ?6777次閱讀

    雙路紅綠燈開源分享

    電子發(fā)燒友網(wǎng)站提供《雙路紅綠燈開源分享.zip》資料免費(fèi)下載
    發(fā)表于 10-31 11:14 ?1次下載
    雙路<b class='flag-5'>紅綠燈</b>開源分享

    紅綠燈識(shí)別知識(shí)點(diǎn)

    紅綠燈識(shí)別是自動(dòng)駕駛中最為基礎(chǔ)的功能,識(shí)別方法主要有兩種,一種基于視覺圖像識(shí)別,一種基于v2x。 v2x,即通過紅綠燈自己實(shí)時(shí)發(fā)送信號(hào)狀態(tài)
    發(fā)表于 06-06 09:54 ?0次下載
    <b class='flag-5'>紅綠燈</b><b class='flag-5'>識(shí)別</b>知識(shí)點(diǎn)

    Arduino迷你紅綠燈

    電子發(fā)燒友網(wǎng)站提供《Arduino迷你紅綠燈.zip》資料免費(fèi)下載
    發(fā)表于 06-30 14:30 ?0次下載
    Arduino迷你<b class='flag-5'>紅綠燈</b>

    深入淺出Yolov3Yolov4

    Yolov3是目標(biāo)檢測(cè)Yolo系列非常非常經(jīng)典的算法,不過很多同學(xué)拿到Yolov3或者Yolov4的cfg文件時(shí),并不知道如何直觀的可視化查看網(wǎng)絡(luò)結(jié)構(gòu)。
    的頭像 發(fā)表于 01-11 10:42 ?821次閱讀
    深入淺出<b class='flag-5'>Yolov3</b>和<b class='flag-5'>Yolov</b>4

    揭秘 “紅綠燈倒計(jì)時(shí)” 原理

    如今,高德“紅綠燈倒計(jì)時(shí)”功能已服務(wù)遍布全國(guó)范圍內(nèi)近240個(gè)城市的8萬多個(gè)紅綠燈路口,未來還將進(jìn)一步拓展至更高數(shù)量級(jí)。
    的頭像 發(fā)表于 02-21 17:19 ?2099次閱讀