2019年中國(guó)人工智能大會(huì)(Chinese Congress on Artificial Intelligence 2019,簡(jiǎn)稱“CCAI 2019”)將于9月21日-22日在青島膠州召開(kāi)。加拿大滑鐵盧大學(xué)教授Shai Ben-David將出席大會(huì)并發(fā)表演講。
Shai Ben-David教授的研究興趣涉及計(jì)算機(jī)科學(xué)及其應(yīng)用基礎(chǔ)理論,特別是在統(tǒng)計(jì)和機(jī)器學(xué)習(xí)方面有很多的研究。他一直在探索如何為一些十分流行的機(jī)器學(xué)習(xí)和數(shù)據(jù)挖掘范式提供理論基礎(chǔ),用數(shù)學(xué)公式加深我們對(duì)這個(gè)世界的理解。
機(jī)器學(xué)習(xí)的可學(xué)習(xí)性如何判定?
在業(yè)界,近些年來(lái)機(jī)器學(xué)習(xí)在人機(jī)對(duì)弈、語(yǔ)音識(shí)別、圖像識(shí)別等場(chǎng)景下取得了蓬勃發(fā)展,引發(fā)了人們對(duì)人工智能改造未來(lái)社會(huì)的無(wú)限熱情和期待。但在學(xué)界,卻有不少科學(xué)家指出了機(jī)器學(xué)習(xí)的發(fā)展局限。而Shai Ben-David探索的就是這樣一個(gè)機(jī)器學(xué)習(xí)的本質(zhì)問(wèn)題:我們能不能判定人工智能的可學(xué)習(xí)性?
長(zhǎng)久以來(lái),我們一直認(rèn)為只要給定了對(duì)學(xué)習(xí)任務(wù)的一個(gè)精準(zhǔn)的描述,我們就可以去判定一個(gè)機(jī)器學(xué)習(xí)算法能否進(jìn)行學(xué)習(xí)并執(zhí)行這個(gè)任務(wù)。但Shai Ben-David通過(guò)研究給出一個(gè)驚人的答案:不一定!這項(xiàng)成果近期被發(fā)表了Nature Machine Intelligence一刊上。
他指出,如果一個(gè)問(wèn)題只需要“是”或“否”的回答,我們還是可以確切地知道這個(gè)問(wèn)題可否被機(jī)器學(xué)習(xí)算法解決。但是,一旦涉及到更一般的設(shè)置時(shí),我們就無(wú)法區(qū)分可學(xué)習(xí)和不可學(xué)習(xí)的任務(wù)了。
存在無(wú)法用數(shù)學(xué)來(lái)證明或反駁的機(jī)器學(xué)習(xí)問(wèn)題
在機(jī)器學(xué)習(xí)中,對(duì)于面部識(shí)別或推薦引擎等非線性可判斷問(wèn)題,在定義機(jī)器學(xué)習(xí)的可學(xué)習(xí)性時(shí),我們通常是要求這個(gè)機(jī)器學(xué)習(xí)模型是一族函數(shù)中的預(yù)測(cè)性能最佳的。于是,我們一般會(huì)通過(guò)維度分析的方式來(lái)解釋一個(gè)模型的可學(xué)習(xí)性。而在這項(xiàng)研究中,Shai Ben-David等人設(shè)計(jì)了一個(gè)機(jī)器學(xué)習(xí)問(wèn)題EMX(Estimating the Maximum)。
舉個(gè)實(shí)際的例子來(lái)說(shuō),你希望在網(wǎng)站上投放廣告,并最大限度地讓這些廣告有更大目標(biāo)觀眾數(shù)量。你有向面向不同的年齡段的用戶的不同的宣傳廣告,但你不知道誰(shuí)會(huì)訪問(wèn)這個(gè)網(wǎng)站,也不知道年齡分布。你如何選擇一組廣告,最大限度地增加你的目標(biāo)觀眾數(shù)量?這就是一個(gè)現(xiàn)實(shí)的EMX問(wèn)題。
在他的工作中,結(jié)果表明,EMX問(wèn)題的解等價(jià)于連續(xù)統(tǒng)假設(shè),即只有在連續(xù)統(tǒng)假設(shè)成立的情況下,EMX問(wèn)題才是可解決的。這意味著,“人工智能是否具有可學(xué)習(xí)性?”這個(gè)問(wèn)題的答案和連續(xù)統(tǒng)假設(shè)一樣不可知。
但進(jìn)一步研究發(fā)現(xiàn),產(chǎn)生這一結(jié)論的根源在于將可學(xué)習(xí)性定義為學(xué)習(xí)函數(shù)的存在性,而不是學(xué)習(xí)算法的存在性。與算法的存在相比,函數(shù)在無(wú)限域上的存在是一個(gè)微妙的問(wèn)題。他的工作表明,當(dāng)涉及到更一般的學(xué)習(xí)類(lèi)型時(shí),這種關(guān)于可學(xué)習(xí)性的集合論觀點(diǎn)代價(jià)很高。
結(jié)語(yǔ)
對(duì)于目前深度學(xué)習(xí)技術(shù)得到廣泛應(yīng)用的狀況,Shai Ben-David教授也提出了自己的看法:“我們必須謹(jǐn)慎行事,現(xiàn)在有一種大趨勢(shì),人們只關(guān)注于應(yīng)用一個(gè)成功的工具,但是很少有人去關(guān)注為什么它會(huì)成功以及沒(méi)有理論保證它們會(huì)繼續(xù)取得成功?!?/p>
-
人工智能
+關(guān)注
關(guān)注
1793文章
47590瀏覽量
239472 -
機(jī)器學(xué)習(xí)
+關(guān)注
關(guān)注
66文章
8435瀏覽量
132882
原文標(biāo)題:CCAI 2019 | Shai Ben-David:人工智能的可學(xué)習(xí)性能否判定?
文章出處:【微信號(hào):CAAI-1981,微信公眾號(hào):中國(guó)人工智能學(xué)會(huì)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論