0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)的可學(xué)習(xí)性如何判定?

MqC7_CAAI_1981 ? 來(lái)源:YXQ ? 2019-08-09 18:24 ? 次閱讀

2019年中國(guó)人工智能大會(huì)(Chinese Congress on Artificial Intelligence 2019,簡(jiǎn)稱“CCAI 2019”)將于9月21日-22日在青島膠州召開(kāi)。加拿大滑鐵盧大學(xué)教授Shai Ben-David將出席大會(huì)并發(fā)表演講。

Shai Ben-David教授的研究興趣涉及計(jì)算機(jī)科學(xué)及其應(yīng)用基礎(chǔ)理論,特別是在統(tǒng)計(jì)和機(jī)器學(xué)習(xí)方面有很多的研究。他一直在探索如何為一些十分流行的機(jī)器學(xué)習(xí)和數(shù)據(jù)挖掘范式提供理論基礎(chǔ),用數(shù)學(xué)公式加深我們對(duì)這個(gè)世界的理解。

機(jī)器學(xué)習(xí)的可學(xué)習(xí)性如何判定?

在業(yè)界,近些年來(lái)機(jī)器學(xué)習(xí)在人機(jī)對(duì)弈、語(yǔ)音識(shí)別、圖像識(shí)別等場(chǎng)景下取得了蓬勃發(fā)展,引發(fā)了人們對(duì)人工智能改造未來(lái)社會(huì)的無(wú)限熱情和期待。但在學(xué)界,卻有不少科學(xué)家指出了機(jī)器學(xué)習(xí)的發(fā)展局限。而Shai Ben-David探索的就是這樣一個(gè)機(jī)器學(xué)習(xí)的本質(zhì)問(wèn)題:我們能不能判定人工智能的可學(xué)習(xí)性?

長(zhǎng)久以來(lái),我們一直認(rèn)為只要給定了對(duì)學(xué)習(xí)任務(wù)的一個(gè)精準(zhǔn)的描述,我們就可以去判定一個(gè)機(jī)器學(xué)習(xí)算法能否進(jìn)行學(xué)習(xí)并執(zhí)行這個(gè)任務(wù)。但Shai Ben-David通過(guò)研究給出一個(gè)驚人的答案:不一定!這項(xiàng)成果近期被發(fā)表了Nature Machine Intelligence一刊上。

他指出,如果一個(gè)問(wèn)題只需要“是”或“否”的回答,我們還是可以確切地知道這個(gè)問(wèn)題可否被機(jī)器學(xué)習(xí)算法解決。但是,一旦涉及到更一般的設(shè)置時(shí),我們就無(wú)法區(qū)分可學(xué)習(xí)和不可學(xué)習(xí)的任務(wù)了。

存在無(wú)法用數(shù)學(xué)來(lái)證明或反駁的機(jī)器學(xué)習(xí)問(wèn)題

在機(jī)器學(xué)習(xí)中,對(duì)于面部識(shí)別或推薦引擎等非線性可判斷問(wèn)題,在定義機(jī)器學(xué)習(xí)的可學(xué)習(xí)性時(shí),我們通常是要求這個(gè)機(jī)器學(xué)習(xí)模型是一族函數(shù)中的預(yù)測(cè)性能最佳的。于是,我們一般會(huì)通過(guò)維度分析的方式來(lái)解釋一個(gè)模型的可學(xué)習(xí)性。而在這項(xiàng)研究中,Shai Ben-David等人設(shè)計(jì)了一個(gè)機(jī)器學(xué)習(xí)問(wèn)題EMX(Estimating the Maximum)。

舉個(gè)實(shí)際的例子來(lái)說(shuō),你希望在網(wǎng)站上投放廣告,并最大限度地讓這些廣告有更大目標(biāo)觀眾數(shù)量。你有向面向不同的年齡段的用戶的不同的宣傳廣告,但你不知道誰(shuí)會(huì)訪問(wèn)這個(gè)網(wǎng)站,也不知道年齡分布。你如何選擇一組廣告,最大限度地增加你的目標(biāo)觀眾數(shù)量?這就是一個(gè)現(xiàn)實(shí)的EMX問(wèn)題。

在他的工作中,結(jié)果表明,EMX問(wèn)題的解等價(jià)于連續(xù)統(tǒng)假設(shè),即只有在連續(xù)統(tǒng)假設(shè)成立的情況下,EMX問(wèn)題才是可解決的。這意味著,“人工智能是否具有可學(xué)習(xí)性?”這個(gè)問(wèn)題的答案和連續(xù)統(tǒng)假設(shè)一樣不可知。

但進(jìn)一步研究發(fā)現(xiàn),產(chǎn)生這一結(jié)論的根源在于將可學(xué)習(xí)性定義為學(xué)習(xí)函數(shù)的存在性,而不是學(xué)習(xí)算法的存在性。與算法的存在相比,函數(shù)在無(wú)限域上的存在是一個(gè)微妙的問(wèn)題。他的工作表明,當(dāng)涉及到更一般的學(xué)習(xí)類(lèi)型時(shí),這種關(guān)于可學(xué)習(xí)性的集合論觀點(diǎn)代價(jià)很高。

結(jié)語(yǔ)

對(duì)于目前深度學(xué)習(xí)技術(shù)得到廣泛應(yīng)用的狀況,Shai Ben-David教授也提出了自己的看法:“我們必須謹(jǐn)慎行事,現(xiàn)在有一種大趨勢(shì),人們只關(guān)注于應(yīng)用一個(gè)成功的工具,但是很少有人去關(guān)注為什么它會(huì)成功以及沒(méi)有理論保證它們會(huì)繼續(xù)取得成功?!?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1793

    文章

    47590

    瀏覽量

    239472
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8435

    瀏覽量

    132882

原文標(biāo)題:CCAI 2019 | Shai Ben-David:人工智能的可學(xué)習(xí)性能否判定?

文章出處:【微信號(hào):CAAI-1981,微信公眾號(hào):中國(guó)人工智能學(xué)會(huì)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)機(jī)器
    的頭像 發(fā)表于 12-30 09:16 ?316次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營(yíng)等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?140次閱讀

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    來(lái)源:Master編程樹(shù)“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆](méi)有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?476次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專門(mén)為深度學(xué)習(xí)機(jī)器
    的頭像 發(fā)表于 11-15 09:19 ?551次閱讀

    具身智能與機(jī)器學(xué)習(xí)的關(guān)系

    具身智能(Embodied Intelligence)和機(jī)器學(xué)習(xí)(Machine Learning)是人工智能領(lǐng)域的兩個(gè)重要概念,它們之間存在著密切的關(guān)系。 1. 具身智能的定義 具身智能是指智能體
    的頭像 發(fā)表于 10-27 10:33 ?454次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類(lèi)似人類(lèi)智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2518次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    機(jī)器學(xué)習(xí)中的數(shù)據(jù)分割方法

    機(jī)器學(xué)習(xí)中,數(shù)據(jù)分割是一項(xiàng)至關(guān)重要的任務(wù),它直接影響到模型的訓(xùn)練效果、泛化能力以及最終的性能評(píng)估。本文將從多個(gè)方面詳細(xì)探討機(jī)器學(xué)習(xí)中數(shù)據(jù)分割的方法,包括常見(jiàn)的分割方法、各自的優(yōu)缺點(diǎn)、
    的頭像 發(fā)表于 07-10 16:10 ?2055次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機(jī)器學(xué)習(xí)(Machine Learning, ML)和深度學(xué)習(xí)(Deep Learning, DL)已成為
    的頭像 發(fā)表于 07-03 18:22 ?1377次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過(guò)讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無(wú)需進(jìn)行明確的編程。本文將深入解讀幾種常見(jiàn)的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1262次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來(lái),數(shù)據(jù)量的爆炸性增長(zhǎng)對(duì)數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過(guò)訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入探討機(jī)器
    的頭像 發(fā)表于 07-02 11:22 ?736次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1500次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)機(jī)器學(xué)習(xí)領(lǐng)域都經(jīng)常被
    的頭像 發(fā)表于 06-27 08:27 ?1702次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典算法與應(yīng)用

    機(jī)器學(xué)習(xí)怎么進(jìn)入人工智能

    ,人工智能已成為一個(gè)熱門(mén)領(lǐng)域,涉及到多個(gè)行業(yè)和領(lǐng)域,例如語(yǔ)音識(shí)別、機(jī)器翻譯、圖像識(shí)別等。 在編程中進(jìn)行人工智能的關(guān)鍵是使用機(jī)器學(xué)習(xí)算法,這是一類(lèi)基于樣本數(shù)據(jù)和模型訓(xùn)練來(lái)進(jìn)行預(yù)測(cè)和判斷的算法。下面將介紹使用
    的頭像 發(fā)表于 04-04 08:41 ?364次閱讀

    機(jī)器學(xué)習(xí)8大調(diào)參技巧

    今天給大家一篇關(guān)于機(jī)器學(xué)習(xí)調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機(jī)器學(xué)習(xí)例程中的基本步驟之一。該方法也稱為超參數(shù)優(yōu)化,需要搜索超參數(shù)的最佳配置以實(shí)現(xiàn)最佳性能。
    的頭像 發(fā)表于 03-23 08:26 ?659次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>8大調(diào)參技巧

    微軟推出ONNX Runtime Web,利用WebGPU優(yōu)化瀏覽器機(jī)器學(xué)習(xí)性

    作為微軟的 JavaScript 庫(kù),ONNX Runtime Web 使得網(wǎng)絡(luò)開(kāi)發(fā)者能在瀏覽器環(huán)境下部署機(jī)器學(xué)習(xí)模型,并提供多種硬件加速的后端支持。
    的頭像 發(fā)表于 03-05 14:23 ?1201次閱讀