0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

DeepMind再創(chuàng)記錄!構(gòu)建蛋白結(jié)構(gòu)預(yù)測的新方法

5RJg_mcuworld ? 來源:YXQ ? 2019-08-06 14:54 ? 次閱讀

在生物醫(yī)學(xué)領(lǐng)域,DeepMind 又做出了具有里程碑意義的產(chǎn)品。

兩年一度的國際蛋白質(zhì)結(jié)構(gòu)預(yù)測競賽(CASP)的在周末正式公布最終結(jié)果。這個已經(jīng)進(jìn)行了 25 年的比賽項(xiàng)目,每屆都有來自世界各地的數(shù)百支團(tuán)隊(duì)參與,以促進(jìn)研究和衡量最新方法在提高預(yù)測準(zhǔn)確性方面的進(jìn)展。

據(jù)《衛(wèi)報(bào)》報(bào)道,DeepMind 花了兩年的時間做出來的“新生兒”AlphaFold 這次在 98 名參賽者中排名第一,它獲得了預(yù)測 43 種蛋白中的 25 種蛋白結(jié)構(gòu)的最高分,排名第二的隊(duì)伍只有其中 3 個獲得了預(yù)測最高分。CASP 的組織者稱 DeepMind “用計(jì)算方法在預(yù)測蛋白結(jié)構(gòu)中取得了前所未有的進(jìn)步”。

實(shí)際上,早在 2017 年 10 月,DeepMind 就表示他們對人工智能在藥物開發(fā)中的應(yīng)用感興趣,而新藥開發(fā)的重要一步就是對靶點(diǎn)蛋白質(zhì)三維結(jié)構(gòu)的精準(zhǔn)測算。

DeepMind 近日在博客中介紹了背后的技術(shù)原理。DeepMind 稱,通過采用跨學(xué)科方法,DeepMind 匯集了來自結(jié)構(gòu)生物學(xué)、物理學(xué)和機(jī)器學(xué)習(xí)領(lǐng)域的專家,使用前沿技術(shù)在僅基于基因序列的基礎(chǔ)上預(yù)測蛋白質(zhì)的 3D 結(jié)構(gòu)。

蛋白折疊難題

眾所周知,蛋白質(zhì)是維持生命所必需的分子,帶有蛋白質(zhì)編碼的 DNA 片段則稱為基因,而蛋白質(zhì)的功能一般取決于其獨(dú)特的 3D 結(jié)構(gòu)。

例如,構(gòu)成人體免疫系統(tǒng)的抗體蛋白是“Y 形”的,形狀類似于獨(dú)特的鉤。通過鎖定病毒和細(xì)菌,抗體蛋白能夠檢測和標(biāo)記這些引發(fā)疾病的微生物并最終消滅它們。其他類型的蛋白質(zhì)包括 CRISPR 和 Cas9,它們會像剪刀一樣剪切并粘貼 DNA。

但純粹從蛋白質(zhì)的基因序列中找出三維形狀并不容易,其挑戰(zhàn)在于 DNA 僅包含有關(guān)蛋白質(zhì)構(gòu)建塊序列的信息——氨基酸殘基,它形成了長鏈,預(yù)測這些鏈如何折疊成蛋白質(zhì)的復(fù)雜 3D 結(jié)構(gòu)也就是所謂的“蛋白折疊問題”,是科學(xué)家們幾十年來都未曾解決的難題。

而預(yù)測蛋白質(zhì)的形狀有助于科學(xué)家了解它在體內(nèi)的作用,這也是診斷和治療由錯誤折疊的蛋白質(zhì)所引發(fā)疾病的基礎(chǔ),如阿爾茨海默氏癥、帕金森氏癥、亨丁頓氏舞蹈癥和囊腫性纖維化。

隨著科學(xué)家們通過模擬和模型獲得更多關(guān)于蛋白質(zhì)形狀及其運(yùn)作方式的知識,它會在藥物發(fā)現(xiàn)中發(fā)揮作用,同時也能降低相關(guān)實(shí)驗(yàn)成本,這將造福全世界數(shù)百萬患者。此外,對蛋白折疊的理解也將有助于生物可降解酶的發(fā)展,以此更容易分解廢物。

AI 能做什么?

在過去的五十年中,科學(xué)家們已經(jīng)能夠使用冷凍電子顯微鏡、核磁共振等技術(shù)來確定實(shí)驗(yàn)室中的蛋白質(zhì)形狀,但這些方法的成本高達(dá)成千上萬美元,而人工智能方法恰是很好的替代方案。

過去幾年中,由于基因測序成本的快速降低以及基因組學(xué)領(lǐng)域豐富的大數(shù)據(jù),依賴于基因組數(shù)據(jù)預(yù)測問題的深度學(xué)習(xí)方法變得越來越流行。

DeepMind 的團(tuán)隊(duì)專注于從頭開始建模目標(biāo)形狀的難題,而不是使用先前解析的蛋白質(zhì)作為模板。總體而言,他們使用了兩種不同的方法來預(yù)測完整的蛋白質(zhì)結(jié)構(gòu)。

使用神經(jīng)網(wǎng)絡(luò)預(yù)測物理特性

這兩種方法都依賴于深度神經(jīng)網(wǎng)絡(luò),這些神經(jīng)網(wǎng)絡(luò)經(jīng)過訓(xùn)練可以從基因序列中預(yù)測蛋白質(zhì)的特性。

他們的神經(jīng)網(wǎng)絡(luò)預(yù)測的特性包括:(a)氨基酸對之間的距離和(b)連接這些氨基酸的化學(xué)鍵之間的角度。這是在常用技術(shù)基礎(chǔ)上的一大進(jìn)步,這些技術(shù)估計(jì)氨基酸對是否彼此接近。

他們訓(xùn)練了一個神經(jīng)網(wǎng)絡(luò)來預(yù)測蛋白質(zhì)中每對殘基之間的距離分布,然后將這些概率組合成評估蛋白質(zhì)結(jié)構(gòu)準(zhǔn)確度的分?jǐn)?shù)。他們還訓(xùn)練了一個單獨(dú)的神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)使用匯總了的所有距離分布來評估預(yù)測結(jié)構(gòu)與標(biāo)準(zhǔn)結(jié)構(gòu)的接近程度。

構(gòu)建蛋白結(jié)構(gòu)預(yù)測的新方法

使用這些評分函數(shù),能夠找到與他們的預(yù)測相匹配的結(jié)構(gòu)。他們的第一種方法建立在結(jié)構(gòu)生物學(xué)常用的技術(shù)上,并用新的蛋白質(zhì)片段反復(fù)替換蛋白質(zhì)結(jié)構(gòu)的片段。他們訓(xùn)練出了一種生成神經(jīng)網(wǎng)絡(luò)來構(gòu)建新片段,以此來不斷提升預(yù)測蛋白質(zhì)結(jié)構(gòu)的準(zhǔn)確度。

第二種方法是通過梯度下降方法來優(yōu)化準(zhǔn)確度,這種技術(shù)應(yīng)用在了整個蛋白鏈而不是在組合之前單獨(dú)折疊的片段中,這也降低了預(yù)測處理的復(fù)雜性。

“預(yù)測蛋白折疊形狀對解決很多世紀(jì)性難題有重要意義。它可以影響健康、生態(tài)、環(huán)境等任何涉及生命系統(tǒng)的問題?!痹诒磉_(dá)了對人工智能的信心后,雷丁大學(xué)的研究人員 Liam McGuffin 也理性表示,蛋白折疊問題目前只是邁出了第一步,這是一個極具挑戰(zhàn)性的問題,還有很多好想法沒能實(shí)施。

盡管 AlphaFold 沒有像“大哥”AlphaGo 橫空出世時那樣的熱度,但這并不能忽視 AlphaFold 對業(yè)界所具有的重要意義。

在 DeepMind 團(tuán)隊(duì)看來,AlphaFold 的初步成就表明了 AI 在科學(xué)發(fā)現(xiàn)中的實(shí)用性,機(jī)器學(xué)習(xí)系統(tǒng)能整合各種信息來源,以幫助科學(xué)家快速找到解決復(fù)雜問題的創(chuàng)造性解決方案。正如我們已經(jīng)看到 AI 如何通過 AlphaGo 和 AlphaZero 等系統(tǒng)幫助人們掌握復(fù)雜游戲。他們希望,AI 技術(shù)的突破有一天會幫助人類掌握基本的科學(xué)問題。

近來在 AI 在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用,包括語音錄入病歷、醫(yī)療影像、健康管理等多領(lǐng)域已然取得了一些成績,但總體而言任重道遠(yuǎn),我們需要更多像 DeepMind 這樣的團(tuán)隊(duì)不斷地進(jìn)行探索。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1793

    文章

    47532

    瀏覽量

    239295
  • DeepMind
    +關(guān)注

    關(guān)注

    0

    文章

    131

    瀏覽量

    10894

原文標(biāo)題:AlphaGo“兄弟”AlphaFold出世,背后用了哪些技術(shù)?

文章出處:【微信號:mcuworld,微信公眾號:嵌入式資訊精選】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    大華股份榮獲中國創(chuàng)新方法大賽一等獎

    近日,備受矚目的2024年中國創(chuàng)新方法大賽全國總決賽在重慶圓滿落下帷幕。此次大賽由中國科協(xié)與重慶市人民政府聯(lián)合主辦,吸引了眾多創(chuàng)新企業(yè)和團(tuán)隊(duì)參與,共同展示創(chuàng)新成果,角逐榮譽(yù)獎項(xiàng)。 在這場創(chuàng)新盛宴中
    的頭像 發(fā)表于 12-27 14:50 ?217次閱讀

    基于遺傳算法的QD-SOA設(shè)計(jì)新方法

    了QD-SOA的設(shè)計(jì),提出了一種基于遺傳算法的QD-SOA設(shè)計(jì)新方法。由于具有用于設(shè)計(jì)的模型是必不可少的,因此在第一步中獲得數(shù)值模型。然后,利用從數(shù)值模型中采樣的訓(xùn)練數(shù)據(jù)建立人工神經(jīng)網(wǎng)絡(luò)模型。實(shí)驗(yàn)表明,該神經(jīng)模型具有較高的精度和較
    的頭像 發(fā)表于 12-17 09:58 ?124次閱讀
    基于遺傳算法的QD-SOA設(shè)計(jì)<b class='flag-5'>新方法</b>

    一種降低VIO/VSLAM系統(tǒng)漂移的新方法

    本文提出了一種新方法,通過使用點(diǎn)到平面匹配將VIO/VSLAM系統(tǒng)生成的稀疏3D點(diǎn)云與數(shù)字孿生體進(jìn)行對齊,從而實(shí)現(xiàn)精確且全球一致的定位,無需視覺數(shù)據(jù)關(guān)聯(lián)。所提方法為VIO/VSLAM系統(tǒng)提供了緊密
    的頭像 發(fā)表于 12-13 11:18 ?209次閱讀
    一種降低VIO/VSLAM系統(tǒng)漂移的<b class='flag-5'>新方法</b>

    大華股份榮獲2024年中國創(chuàng)新方法大賽一等獎

    近日,由中國科協(xié)、重慶市人民政府舉辦的2024年中國創(chuàng)新方法大賽全國總決賽在重慶落下帷幕。大華股份靈活運(yùn)用創(chuàng)新方法、突破行業(yè)性技術(shù)難題,憑借“不懼強(qiáng)光,分毫必現(xiàn),基于TRIZ的強(qiáng)逆光銳捕技術(shù)”項(xiàng)目,斬獲全國一等獎。
    的頭像 發(fā)表于 12-04 17:19 ?376次閱讀

    利用全息技術(shù)在硅晶圓內(nèi)部制造納米結(jié)構(gòu)新方法

    本文介紹了一種利用全息技術(shù)在硅晶圓內(nèi)部制造納米結(jié)構(gòu)新方法。 研究人員提出了一種在硅晶圓內(nèi)部制造納米結(jié)構(gòu)新方法。傳統(tǒng)上,晶圓上的微結(jié)構(gòu)加工
    的頭像 發(fā)表于 11-18 11:45 ?343次閱讀

    上海光機(jī)所提出強(qiáng)激光產(chǎn)生高能量子渦旋態(tài)電子新方法

    近期,中國科學(xué)院上海光學(xué)精密機(jī)械研究所強(qiáng)場激光物理國家重點(diǎn)實(shí)驗(yàn)室研究團(tuán)隊(duì)發(fā)展了包括軌道角動量量子數(shù)的QED散射理論,并提出強(qiáng)激光產(chǎn)生高能量子渦旋態(tài)電子的新方法。相關(guān)成果以“Generation
    的頭像 發(fā)表于 10-23 10:41 ?190次閱讀
    上海光機(jī)所提出強(qiáng)激光產(chǎn)生高能量子渦旋態(tài)電子<b class='flag-5'>新方法</b>

    保護(hù)4-20 mA,±20-mA模擬輸入的新方法

    電子發(fā)燒友網(wǎng)站提供《保護(hù)4-20 mA,±20-mA模擬輸入的新方法.pdf》資料免費(fèi)下載
    發(fā)表于 09-24 09:27 ?0次下載
    保護(hù)4-20 mA,±20-mA模擬輸入的<b class='flag-5'>新方法</b>

    實(shí)踐JLink 7.62手動增加新MCU型號支持新方法

    大家好,我是痞子衡,是正經(jīng)搞技術(shù)的痞子。今天痞子衡給大家分享的是實(shí)踐JLink 7.62手動增加新MCU型號支持新方法。
    的頭像 發(fā)表于 08-08 15:25 ?805次閱讀
    實(shí)踐JLink 7.62手動增加新MCU型號支持<b class='flag-5'>新方法</b>

    一種無透鏡成像的新方法

    使用OAM-HHG EUV光束對高度周期性結(jié)構(gòu)進(jìn)行成像的EUV聚光顯微鏡 為了研究微電子或光子元件中的納米級圖案,一種基于無透鏡成像的新方法可以實(shí)現(xiàn)近乎完美的高分辨率顯微鏡。 層析成像是一種強(qiáng)大的無
    的頭像 發(fā)表于 07-19 06:20 ?422次閱讀
    一種無透鏡成像的<b class='flag-5'>新方法</b>

    從“蓋房子”到“頂竹筍”:我國科學(xué)家首創(chuàng)晶體制備新方法

    ”。 北京大學(xué)科研團(tuán)隊(duì)在國際上首創(chuàng)出一種全新的晶體制備方法,讓材料如“頂著上方結(jié)構(gòu)往上走”的“頂竹筍”一般生長,可保證每層晶體結(jié)構(gòu)的快速生長和均一排布,極大提高了晶體結(jié)構(gòu)的可控性。 這
    的頭像 發(fā)表于 07-09 14:24 ?217次閱讀
    從“蓋房子”到“頂竹筍”:我國科學(xué)家首創(chuàng)晶體制備<b class='flag-5'>新方法</b>

    神經(jīng)網(wǎng)絡(luò)預(yù)測模型的構(gòu)建方法

    神經(jīng)網(wǎng)絡(luò)模型作為一種強(qiáng)大的預(yù)測工具,廣泛應(yīng)用于各種領(lǐng)域,如金融、醫(yī)療、交通等。本文將詳細(xì)介紹神經(jīng)網(wǎng)絡(luò)預(yù)測模型的構(gòu)建方法,包括模型設(shè)計(jì)、數(shù)據(jù)集準(zhǔn)備、模型訓(xùn)練、驗(yàn)證與評估等步驟,并附以代碼
    的頭像 發(fā)表于 07-05 17:41 ?741次閱讀

    使隱形可見:新方法可在室溫下探測中紅外光

    MIR振動輔助發(fā)光(MIRVAL) 來自伯明翰大學(xué)和劍橋大學(xué)的科學(xué)家們開發(fā)了一種新方法,利用量子系統(tǒng)在室溫下探測中紅外線(MIR)光。 這項(xiàng)研究成果發(fā)表在《自然·光子學(xué)》雜志上,在劍橋大學(xué)卡文迪什
    的頭像 發(fā)表于 04-19 06:31 ?342次閱讀
    使隱形可見:<b class='flag-5'>新方法</b>可在室溫下探測中紅外光

    科技云報(bào)道:“老三樣”不管用了,網(wǎng)絡(luò)安全要靠啥?

    新時代需要新方法
    的頭像 發(fā)表于 04-18 16:01 ?290次閱讀
    科技云報(bào)道:“老三樣”不管用了,網(wǎng)絡(luò)安全要靠啥?

    軋機(jī)牌坊滑板壓虧修復(fù)的新方法

    電子發(fā)燒友網(wǎng)站提供《軋機(jī)牌坊滑板壓虧修復(fù)的新方法.docx》資料免費(fèi)下載
    發(fā)表于 03-14 16:16 ?0次下載

    氫壓機(jī)軸承位磨損維修的新方法

    電子發(fā)燒友網(wǎng)站提供《氫壓機(jī)軸承位磨損維修的新方法.docx》資料免費(fèi)下載
    發(fā)表于 03-01 16:23 ?0次下載