0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

關(guān)于加強(qiáng)深度學(xué)習(xí)能力以簡化設(shè)計、訓(xùn)練和部署模型分析和介紹

MATLAB ? 來源:djl ? 2019-09-16 10:52 ? 次閱讀

MATLAB Release 2017b(R2017b) 今日正式推出,其中包括MATLAB和Simulink的若干新功能、六款新產(chǎn)品以及對其他 86 款產(chǎn)品的更新和修復(fù)補(bǔ)丁。此發(fā)行版還添加了新的重要的深度學(xué)習(xí)功能,可簡化工程師、研究人員及其他領(lǐng)域?qū)<以O(shè)計、訓(xùn)練和部署模型的方式。

隨著智能設(shè)備和物聯(lián)網(wǎng)的發(fā)展,設(shè)計團(tuán)隊面臨創(chuàng)造更加智能的產(chǎn)品和應(yīng)用的挑戰(zhàn),他們需要自己掌握深度學(xué)習(xí)技能或依賴其他具有深度學(xué)習(xí)專長但可能不了解應(yīng)用場景的團(tuán)隊。借助 R2017b,工程和系統(tǒng)集成團(tuán)隊可以將 MATLAB 拓展用于深度學(xué)習(xí),以更好地保持對整個設(shè)計過程的控制,并更快地實(shí)現(xiàn)更高質(zhì)量的設(shè)計。可以通過使用預(yù)訓(xùn)練網(wǎng)絡(luò),協(xié)作開發(fā)代碼和模型,然后部署到 GPU嵌入式設(shè)備。使用 MATLAB 可以改進(jìn)結(jié)果質(zhì)量,同時通過自動化地面實(shí)況標(biāo)記 App 來縮短模型開發(fā)時間。

R2017b中的具體深度學(xué)習(xí)特性、產(chǎn)品和功能包括:

Neural Network Toolbox增加了對復(fù)雜架構(gòu)的支持,包括有向無環(huán)圖 (DAG) 和長短期記憶 (LSTM) 網(wǎng)絡(luò),并提供對 GoogLeNet 等流行的預(yù)訓(xùn)練模型的訪問。

Computer Vision System Toolbox中的 Image Labeler 應(yīng)用現(xiàn)在提供一種方便和交互的方式來標(biāo)記一系列圖像中的地面實(shí)況數(shù)據(jù)。除對象檢測工作流程外,該工具箱現(xiàn)在還利用深度學(xué)習(xí)支持語義分割,對圖像中的像素區(qū)域進(jìn)行分類,以及評估和可視化分割結(jié)果。

MATLAB深度學(xué)習(xí):為自動駕駛的工作流程提供語義分割

新產(chǎn)品GPU Coder可自動將深度學(xué)習(xí)模型轉(zhuǎn)換為 NVIDIA GPU 的 CUDA 代碼。內(nèi)部基準(zhǔn)測試顯示,在部署階段為深度學(xué)習(xí)模型產(chǎn)生的代碼,比 TensorFlow 的性能提高 7倍,比 Caffe2的性能提高4.5 倍。

注:使用 TitanXP GPU 和 Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz 對 AlexNet 的推理性能執(zhí)行了內(nèi)部基準(zhǔn)測試。使用的軟件版本是 MATLAB(R2017b)、TensorFlow(1.2.0) 和 Caffe2(0.8.1)。每個軟件的 GPU 加速版本用于基準(zhǔn)測試。所有測試均在 Windows 10 上運(yùn)行。

與 R2017a 推出的功能相結(jié)合,可以使用預(yù)訓(xùn)練模型進(jìn)行遷移學(xué)習(xí),包括卷積神經(jīng)網(wǎng)絡(luò) (CNN) 模型(AlexNet、VGG-16 和 VGG-19)以及來自 Caffe 的模型(包括 Caffe Model Zoo)??梢詮念^開始開發(fā)模型,包括使用 CNN 進(jìn)行圖像分類、對象檢測、回歸等。

其他系列更新:

除深度學(xué)習(xí)外,R2017b 還包括其他關(guān)鍵領(lǐng)域的一系列更新,包括:

使用 MATLAB 進(jìn)行數(shù)據(jù)分析:一款新 Text Analytics Toolbox 產(chǎn)品、可擴(kuò)展數(shù)據(jù)存儲、用于機(jī)器學(xué)習(xí)的更多大數(shù)據(jù)繪圖和算法,以及 Microsoft Azure Blob 存儲支持

使用 Simulink 進(jìn)行實(shí)時軟件建模:對用于軟件環(huán)境的調(diào)度效果進(jìn)行建模并實(shí)現(xiàn)可插入式組件

使用 Simulink 進(jìn)行驗(yàn)證和確認(rèn):用于需求建模、測試覆蓋率分析和合規(guī)性檢查的新工具

MathWorks是數(shù)學(xué)計算軟件領(lǐng)域世界領(lǐng)先的開發(fā)商。它所推出的MATLAB是一種用于算法開發(fā)、數(shù)據(jù)分析、可視化和數(shù)值計算的程序設(shè)計環(huán)境,稱為“科學(xué)計算的語言”。Simulink是一種圖形環(huán)境,可用于對多域動態(tài)系統(tǒng)和嵌入式系統(tǒng)進(jìn)行仿真和基于模型設(shè)計。全球的工程師和科學(xué)家們都依賴于MathWorks公司所提供的這些產(chǎn)品系列,來加快在汽車、航空、電子、金融服務(wù)、生物醫(yī)藥以及其他行業(yè)的發(fā)明、創(chuàng)新及開發(fā)的步伐。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 嵌入式
    +關(guān)注

    關(guān)注

    5082

    文章

    19126

    瀏覽量

    305242
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5503

    瀏覽量

    121170
收藏 人收藏

    評論

    相關(guān)推薦

    Flexus X 實(shí)例 ultralytics 模型 yolov10 深度學(xué)習(xí) AI 部署與應(yīng)用

    前言: ???深度學(xué)習(xí)新紀(jì)元,828 B2B 企業(yè)節(jié) Flexus X 實(shí)例特惠!想要高效訓(xùn)練 YOLOv10 模型,實(shí)現(xiàn)精準(zhǔn)圖像識別?Flexus X
    的頭像 發(fā)表于 12-24 12:24 ?176次閱讀
    Flexus X 實(shí)例 ultralytics <b class='flag-5'>模型</b> yolov10 <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b> AI <b class='flag-5'>部署</b>與應(yīng)用

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    策略,提高模型學(xué)習(xí)能力和泛化性能。 硬件友好性: 在驍龍865等硬件平臺上表現(xiàn)出色,并支持快速導(dǎo)出為 ONNX 格式,使得模型在硬件
    發(fā)表于 12-19 14:33

    AI模型部署邊緣設(shè)備的奇妙之旅:如何實(shí)現(xiàn)手寫數(shù)字識別

    新的數(shù)據(jù)樣本,另一個是判別器用來判斷這些樣本的真實(shí)性。兩者相互競爭,共同進(jìn)化,最終實(shí)現(xiàn)高質(zhì)量的數(shù)據(jù)合成。 2.4 模型優(yōu)化技術(shù) 在將深度學(xué)習(xí)模型部署
    發(fā)表于 12-06 17:20

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?215次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>訓(xùn)練</b>的方法

    GPU深度學(xué)習(xí)應(yīng)用案例

    能力,可以顯著提高圖像識別模型訓(xùn)練速度和準(zhǔn)確性。例如,在人臉識別、自動駕駛等領(lǐng)域,GPU被廣泛應(yīng)用于加速深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?398次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)
    的頭像 發(fā)表于 10-25 09:22 ?229次閱讀

    AI大模型深度學(xué)習(xí)的關(guān)系

    人類的學(xué)習(xí)過程,實(shí)現(xiàn)對復(fù)雜數(shù)據(jù)的學(xué)習(xí)和識別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計算資源來進(jìn)行訓(xùn)練和推理。
    的頭像 發(fā)表于 10-23 15:25 ?743次閱讀

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識學(xué)習(xí)

    的信息,提供更全面的上下文理解。這使得模型能夠更準(zhǔn)確地理解復(fù)雜問題中的多個層面和隱含意義。 2. 語義分析 模型通過訓(xùn)練學(xué)習(xí)到語言的語義特征
    發(fā)表于 08-02 11:03

    llm模型訓(xùn)練一般用什么系統(tǒng)

    LLM(Large Language Model,大型語言模型)是近年來在自然語言處理領(lǐng)域取得顯著成果的一種深度學(xué)習(xí)模型。它通常需要大量的計算資源和數(shù)據(jù)來進(jìn)行
    的頭像 發(fā)表于 07-09 10:02 ?413次閱讀

    人臉識別模型訓(xùn)練是什么意思

    人臉識別模型訓(xùn)練是指通過大量的人臉數(shù)據(jù),使用機(jī)器學(xué)習(xí)深度學(xué)習(xí)算法,訓(xùn)練出一個能夠識別和分類人臉
    的頭像 發(fā)表于 07-04 09:16 ?606次閱讀

    深度學(xué)習(xí)的典型模型訓(xùn)練過程

    深度學(xué)習(xí)作為人工智能領(lǐng)域的一個重要分支,近年來在圖像識別、語音識別、自然語言處理等多個領(lǐng)域取得了顯著進(jìn)展。其核心在于通過構(gòu)建復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,從大規(guī)模數(shù)據(jù)中自動學(xué)習(xí)并提取特征,進(jìn)而實(shí)
    的頭像 發(fā)表于 07-03 16:06 ?1474次閱讀

    深度學(xué)習(xí)模型訓(xùn)練過程詳解

    詳細(xì)介紹深度學(xué)習(xí)模型訓(xùn)練的全過程,包括數(shù)據(jù)預(yù)處理、模型構(gòu)建、損失函數(shù)定義、優(yōu)化算法選擇、
    的頭像 發(fā)表于 07-01 16:13 ?1275次閱讀

    深度學(xué)習(xí)模型優(yōu)化與調(diào)試方法

    深度學(xué)習(xí)模型訓(xùn)練過程中,往往會遇到各種問題和挑戰(zhàn),如過擬合、欠擬合、梯度消失或爆炸等。因此,對深度學(xué)習(xí)
    的頭像 發(fā)表于 07-01 11:41 ?823次閱讀

    【大語言模型:原理與工程實(shí)踐】大語言模型的預(yù)訓(xùn)練

    大語言模型的核心特點(diǎn)在于其龐大的參數(shù)量,這賦予了模型強(qiáng)大的學(xué)習(xí)容量,使其無需依賴微調(diào)即可適應(yīng)各種下游任務(wù),而更傾向于培養(yǎng)通用的處理能力。然而,隨著學(xué)
    發(fā)表于 05-07 17:10

    【大語言模型:原理與工程實(shí)踐】揭開大語言模型的面紗

    復(fù)用和優(yōu)化效果。這些趨勢共同推動了大語言模型深度學(xué)習(xí)研究和應(yīng)用中的重要地位。數(shù)據(jù)效應(yīng)指出大型模型需要更多數(shù)據(jù)進(jìn)行訓(xùn)練,
    發(fā)表于 05-04 23:55