神經(jīng)網(wǎng)絡(luò)50例
2012-11-28 16:49:56
神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24
大家有知道labview中神經(jīng)網(wǎng)絡(luò)和SVM的工具包是哪個(gè)嗎?求分享一下,有做這方面的朋友也可以交流一下,大家共同進(jìn)步
2017-10-13 11:41:43
03_深度學(xué)習(xí)入門_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05
神經(jīng)網(wǎng)絡(luò)在訓(xùn)練時(shí)的優(yōu)化首先是對(duì)模型的當(dāng)前狀態(tài)進(jìn)行誤差估計(jì),然后為了減少下一次評(píng)估的誤差,需要使用一個(gè)能夠表示錯(cuò)誤函數(shù)對(duì)權(quán)重進(jìn)行更新,這個(gè)函數(shù)被稱為損失函數(shù)。損失函數(shù)的選擇與神經(jīng)網(wǎng)絡(luò)模型從示例中學(xué)
2022-10-20 17:14:15
神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23
第1章 概述 1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展 1.2 生物神經(jīng)元 1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成 第2章人工神經(jīng)網(wǎng)絡(luò)基本模型 2.1 MP模型 2.2 感知器模型 2.3 自適應(yīng)線性
2012-03-20 11:32:43
將神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53
神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介
2012-08-05 21:01:08
神經(jīng)網(wǎng)絡(luò)系統(tǒng)辨識(shí)程序
2018-01-04 13:29:33
基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
一文看懂BP神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)數(shù)學(xué)知識(shí)
2020-06-16 07:14:35
MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13
MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)說(shuō)明:本文檔中所列出的函數(shù)適用于MATLAB5.3以上版本,為了簡(jiǎn)明起見,只列出了函數(shù)名,若需要進(jìn)一步的說(shuō)明,請(qǐng)參閱MATLAB的幫助文檔。1. 網(wǎng)絡(luò)創(chuàng)建函數(shù)newp
2009-09-22 16:10:08
Matlab神經(jīng)網(wǎng)絡(luò)工具箱是什么?Matlab神經(jīng)網(wǎng)絡(luò)工具箱在同步中的應(yīng)用有哪些?
2021-04-26 06:42:29
請(qǐng)問(wèn):我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08
習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對(duì)于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)是如何一直沒有具體實(shí)現(xiàn)一下:現(xiàn)看到一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對(duì)應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個(gè)數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21
`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機(jī)器學(xué)習(xí)的步驟:訓(xùn)練與預(yù)測(cè)、訓(xùn)練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達(dá)訓(xùn)練流程以及AI普及化教育之路。`
2020-11-05 17:48:39
前言前面我們通過(guò)notebook,完成了在PYNQ-Z2開發(fā)板上編寫并運(yùn)行python程序。我們的最終目的是基于神經(jīng)網(wǎng)絡(luò),完成手寫的數(shù)字識(shí)別。在這之前,有必要講一下神經(jīng)網(wǎng)絡(luò)的基本概念和工作原理。何為
2019-03-03 22:10:19
電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助?。c(diǎn)擊標(biāo)題即可進(jìn)入頁(yè)面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14
今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過(guò)一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競(jìng)爭(zhēng)學(xué)習(xí)的一個(gè)代表,競(jìng)爭(zhēng)型學(xué)習(xí)
2019-07-21 04:30:00
`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個(gè)隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實(shí)由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò):神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過(guò)程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過(guò)程看成是一個(gè)“網(wǎng)絡(luò)”,通過(guò)不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48
簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
圖卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29
優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法有哪些?
2022-09-06 09:52:36
何謂神經(jīng)網(wǎng)絡(luò)處理指令?有什么作用?Armv8.1-M核心實(shí)施選項(xiàng)包括哪些?
2021-06-29 09:07:44
全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42
今天做了一個(gè)神經(jīng)網(wǎng)絡(luò)模型,結(jié)果performance一直達(dá)不到要求,想問(wèn)一下,是哪里出問(wèn)題了呢?還有就是我的第二張圖只有一條曲線,這又是為什么呢,希望有大牛能幫忙解答
2018-05-03 15:45:15
【深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37
以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)器上),設(shè)備端采集到數(shù)據(jù)通過(guò)網(wǎng)絡(luò)發(fā)送給服務(wù)器做inference(推理),結(jié)果再通過(guò)網(wǎng)絡(luò)返回給設(shè)備端。如今越來(lái)越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40
卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10
卷積神經(jīng)網(wǎng)絡(luò)入門詳解
2019-02-12 13:58:26
Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅰ)
2019-09-06 17:25:54
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50
卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢(shì),作為一個(gè)
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)
2020-05-05 18:12:50
卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來(lái)越多地支持以前無(wú)法實(shí)現(xiàn)或非常難以實(shí)現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機(jī)器學(xué)習(xí)中的重要性。CNN 是從
2023-02-23 20:11:10
什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22
反饋神經(jīng)網(wǎng)絡(luò)算法
2020-04-28 08:36:58
為提升識(shí)別準(zhǔn)確率,采用改進(jìn)神經(jīng)網(wǎng)絡(luò),通過(guò)Mnist數(shù)據(jù)集進(jìn)行訓(xùn)練。整體處理過(guò)程分為兩步:圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進(jìn)神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個(gè)過(guò)程分為兩個(gè)步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33
最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過(guò)對(duì)系統(tǒng)性能的學(xué)習(xí)來(lái)實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
基于BP神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:37:27
FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問(wèn)題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13
基于RBF神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:38:52
基于光學(xué)芯片的神經(jīng)網(wǎng)絡(luò)訓(xùn)練解析,不看肯定后悔
2021-06-21 06:33:55
如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
巡線智能車控制中的CNN網(wǎng)絡(luò)有何應(yīng)用?嵌入式單片機(jī)中的神經(jīng)網(wǎng)絡(luò)該怎樣去使用?如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢?
2021-12-21 07:47:24
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11
訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)并移植到Lattice FPGA上,通常需要開發(fā)人員既要懂軟件又要懂?dāng)?shù)字電路設(shè)計(jì),是個(gè)不容易的事。好在FPGA廠商為我們提供了許多工具和IP,我們可以在這些工具和IP的基礎(chǔ)上做
2020-11-26 07:46:03
神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡(jiǎn)稱,是當(dāng)前的研究熱點(diǎn)之一。人腦在接受視覺感官傳來(lái)的大量圖像信息后,能迅速做出反應(yīng)
2019-08-08 06:11:30
本文提出了一個(gè)基于FPGA 的信息處理的實(shí)例:一個(gè)簡(jiǎn)單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語(yǔ)言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計(jì),并考慮了模塊間數(shù)據(jù)傳輸信號(hào)同 步的問(wèn)題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問(wèn)題。
2021-05-06 07:22:07
人工神經(jīng)網(wǎng)絡(luò)在很多領(lǐng)域得到了很好的應(yīng)用,尤其是具有分布存儲(chǔ)、并行處理、自學(xué)習(xí)、自組織以及非線性映射等特點(diǎn)的網(wǎng)絡(luò)應(yīng)用更加廣泛。嵌入式便攜設(shè)備也越來(lái)越多地得到應(yīng)用,多數(shù)是基于ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列
2019-09-20 06:15:20
譯者|VincentLee來(lái)源 |曉飛的算法工程筆記脈沖神經(jīng)網(wǎng)絡(luò)(Spiking neural network, SNN)將脈沖神經(jīng)元作為計(jì)算單...
2021-07-26 06:23:59
有提供編寫神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)程序服務(wù)的嗎?
2011-12-10 13:50:46
誰(shuí)有利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序?。ㄎ矣玫陌姹臼?.6的 )
2012-11-26 14:54:59
求助地震波神經(jīng)網(wǎng)絡(luò)程序,共同交流!!
2013-05-11 08:14:19
小女子做基于labview的蒸發(fā)過(guò)程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問(wèn)這個(gè)控制方法可以嗎?有誰(shuí)會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
求助大神 小的現(xiàn)在有個(gè)難題: 一組車重實(shí)時(shí)數(shù)據(jù) 對(duì)應(yīng)一個(gè)車重的最終數(shù)值(一個(gè)一維數(shù)組輸入對(duì)應(yīng)輸出一個(gè)數(shù)值) 這其中可能經(jīng)過(guò)均值、方差、去掉N個(gè)最大值、、、等等的計(jì)算 我的目的就是弄清楚這個(gè)中間計(jì)算過(guò)程 最近實(shí)在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請(qǐng)教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44
求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過(guò)程,最好有程序哈,謝謝??!
2012-12-10 14:55:50
多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22
最簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36
脈沖神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)方式有哪幾種?
2021-10-26 06:58:01
脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)在FPGA上的實(shí)現(xiàn),實(shí)現(xiàn)數(shù)據(jù)分類功能,有報(bào)酬。QQ470345140.
2013-08-25 09:57:14
有沒有做過(guò)關(guān)于神經(jīng)網(wǎng)絡(luò)的,給小女子指點(diǎn)一二吧,感激不盡
2014-01-08 09:39:16
我在matlab中訓(xùn)練好了一個(gè)神經(jīng)網(wǎng)絡(luò)模型,想在labview中調(diào)用,請(qǐng)問(wèn)應(yīng)該怎么做呢?或者labview有自己的神經(jīng)網(wǎng)絡(luò)工具包嗎?
2018-07-05 17:32:32
為什么要用卷積神經(jīng)網(wǎng)絡(luò)?
2020-06-13 13:11:39
原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測(cè)等機(jī)器
2021-12-14 07:35:25
關(guān)于遺傳算法和神經(jīng)網(wǎng)絡(luò)的
2013-05-19 10:22:16
時(shí)空記憶。增加了幾個(gè)非局部模塊后,我們的“非局部神經(jīng)網(wǎng)絡(luò)”結(jié)構(gòu)能比二維和三維卷積網(wǎng)絡(luò)在視頻分類中取得更準(zhǔn)確的結(jié)果。另外,非局部神經(jīng)網(wǎng)絡(luò)在計(jì)算上也比三維卷積神經(jīng)網(wǎng)絡(luò)更加經(jīng)濟(jì)。我們?cè)?Kinetics
2018-11-12 14:52:50
人工神經(jīng)網(wǎng)絡(luò),人工神經(jīng)網(wǎng)絡(luò)是什么意思
神經(jīng)網(wǎng)絡(luò)是一門活躍的邊緣性交叉學(xué)科.研究它的發(fā)展過(guò)程和前沿問(wèn)題,具有重要的理論意義
2010-03-06 13:39:013296 對(duì)于許多機(jī)器學(xué)習(xí)算法來(lái)說(shuō),最終要解決的問(wèn)題往往是最小化一個(gè)函數(shù),我們通常稱這個(gè)函數(shù)叫損失函數(shù)。在神經(jīng)網(wǎng)絡(luò)里面同樣如此,損失函數(shù)層(CostLayer)和 Optimizers 因而應(yīng)運(yùn)而生(……)。
2017-11-30 16:09:108083 神經(jīng)網(wǎng)絡(luò)基本介紹,人工神經(jīng)網(wǎng)絡(luò)(簡(jiǎn)稱神經(jīng)網(wǎng)絡(luò),Neural Network)是模擬人腦思維方式的數(shù)學(xué)模型。
神經(jīng)網(wǎng)絡(luò)是在現(xiàn)代生物學(xué)研究人腦組織成果的基礎(chǔ)上提出的,用來(lái)模擬人類大腦神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和行為。神經(jīng)網(wǎng)絡(luò)反映了人腦功能的基本特征,如并行信息處理、學(xué)習(xí)、聯(lián)想、模式分類、記憶等。
2017-12-06 15:07:500 模糊神經(jīng)網(wǎng)絡(luò)就是模糊理論同神經(jīng)網(wǎng)絡(luò)相結(jié)合的產(chǎn)物,它匯集了神經(jīng)網(wǎng)絡(luò)與模糊理論的優(yōu)點(diǎn),集學(xué)習(xí)、聯(lián)想、識(shí)別、信息處理于一體。
2017-12-29 14:40:4047540 神經(jīng)網(wǎng)絡(luò)可以指向兩種,一個(gè)是生物神經(jīng)網(wǎng)絡(luò),一個(gè)是人工神經(jīng)網(wǎng)絡(luò)。生物神經(jīng)網(wǎng)絡(luò):一般指生物的大腦神經(jīng)元,細(xì)胞,觸點(diǎn)等組成的網(wǎng)絡(luò),用于產(chǎn)生生物的意識(shí),幫助生物進(jìn)行思考和行動(dòng)。
2018-11-24 09:25:3222032 本視頻主要詳細(xì)介紹了神經(jīng)網(wǎng)絡(luò)分類,分別是BP神經(jīng)網(wǎng)絡(luò)、RBF(徑向基)神經(jīng)網(wǎng)絡(luò)、感知器神經(jīng)網(wǎng)絡(luò)、線性神經(jīng)網(wǎng)絡(luò)、自組織神經(jīng)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)。
2019-04-02 15:29:2212598 神經(jīng)網(wǎng)絡(luò)從感知機(jī)發(fā)展到多層前饋神經(jīng)網(wǎng)絡(luò),網(wǎng)絡(luò)變得越來(lái)越復(fù)雜。如上一篇 機(jī)器學(xué)習(xí)中的函數(shù)(2)- 多層前饋網(wǎng)絡(luò)巧解“異或”問(wèn)題,損失函數(shù)上場(chǎng)優(yōu)化網(wǎng)絡(luò)性能 討論針對(duì)前饋神經(jīng)網(wǎng)絡(luò)我們的目標(biāo)是要讓損失函數(shù)
2022-11-01 11:54:292551 在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:442254 本項(xiàng)目在之前項(xiàng)目分類模型基礎(chǔ)上神經(jīng)網(wǎng)絡(luò)應(yīng)用(一)進(jìn)一步拓展神經(jīng)網(wǎng)絡(luò)應(yīng)用,相比之前本項(xiàng)目增加了新的知識(shí)點(diǎn),比如正則化,softmax函數(shù)和交叉熵損失函數(shù)等。
2023-02-24 15:43:471285 有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:18467 被稱為損失函數(shù)。損失函數(shù)的選擇與神經(jīng)網(wǎng)絡(luò)模型從示例中學(xué)習(xí)的特定預(yù)測(cè)建模問(wèn)題(例如分類或回歸)有關(guān)。在本文中我們將介紹常用的一些損失函數(shù),包括:回歸模型的均方誤差損失
2022-10-19 11:17:35476 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361860
評(píng)論
查看更多