場效應管工作原理是什么?
場效應管工作原理是什么?
場效應晶體管(Field Effect Transistor縮寫(FET))簡稱場效應管。一般的晶體管是由兩種極性的載流子,即多數(shù)載流子和反極性的少數(shù)載流子參與導電,因此稱為雙極型晶體管,而FET僅是由多數(shù)載流子參與導電,它與雙極型相反,也稱為單極型晶體管。它屬于電壓控制型半導體器件,具有輸入電阻高(108~109Ω)、噪聲小、功耗低、動態(tài)范圍大、易于集成、沒有二次擊穿現(xiàn)象、安全工作區(qū)域寬等優(yōu)點,現(xiàn)已成為雙極型晶體管和功率晶體管的強大競爭者。
一、場效應管的分類
場效應管分結型、絕緣柵型兩大類。結型場效應管(JFET)因有兩個PN結而得名,絕緣柵型場效應管(JGFET)則因柵極與其它電極完全絕緣而得名。目前在絕緣柵型場效應管中,應用最為廣泛的是MOS場效應管,簡稱MOS管(即金屬-氧化物-半導體場效應管MOSFET);此外還有PMOS、NMOS和VMOS功率場效應管,以及最近剛問世的πMOS場效應管、VMOS功率模塊等。
按溝道半導體材料的不同,結型和絕緣柵型各分溝道和P溝道兩種。若按導電方式來劃分,場效應管又可分成耗盡型與增強型。結型場效應管均為耗盡型,絕緣柵型場效應管既有耗盡型的,也有增強型的。
場效應晶體管可分為結場效應晶體管和MOS場效應晶體管。而MOS場效應晶體管又分為N溝耗盡型和增強型;P溝耗盡型和增強型四大類。見下圖。
現(xiàn)行有兩種命名方法。第一種命名方法與雙極型三極管相同,第三位字母J代表結型場效應管,O代表絕緣柵場效應管。第二位字母代表 材料,D是P型硅,反型層是N溝道;C是N型硅P溝道。例如,3DJ6D是結型N溝道場效應三極管,3DO6C 是絕緣柵型N溝道場效應三極管。
第二種命名方法是CS××#,CS代表場效應管,××以數(shù)字代表型號的序號,#用字母代表同一型號中的不同規(guī)格。例如CS14A、CS45G等。
三、場效應管的參數(shù)
場效應管的參數(shù)很多,包括直流參數(shù)、交流參數(shù)和極限參數(shù),但一般使用時關注以下主要參數(shù):
1、I DSS — 飽和漏源電流。是指結型或耗盡型絕緣柵場效應管中,柵極電壓U GS=0時的漏源電流。
2、UP — 夾斷電壓。是指結型或耗盡型絕緣柵場效應管中,使漏源間剛截止時的柵極電壓。
3、UT — 開啟電壓。是指增強型絕緣柵場效管中,使漏源間剛導通時的柵極電壓。
4、gM — 跨導。是表示柵源電壓U GS — 對漏極電流I D的控制能力,即漏極電流I D變化量與柵源電壓UGS變化量的比值。gM 是衡量場效應管放大能力的重要參數(shù)。
5、BUDS — 漏源擊穿電壓。是指柵源電壓UGS一定時,場效應管正常工作所能承受的最大漏源電壓。這是一項極限參數(shù),加在場效應管上的工作電壓必須小于BUDS。
6、PDSM — 最大耗散功率。也是一項極限參數(shù),是指場效應管性能不變壞時所允許的最大漏源耗散功率。使用時,場效應管實際功耗應小于PDSM并留有一定余量。
7、IDSM — 最大漏源電流。是一項極限參數(shù),是指場效應管正常工作時,漏源間所允許通過的最大電流。場效應管的工作電流不應超過IDSM
幾種常用的場效應三極管的主要參數(shù)
?
1、場效應管可應用于放大。由于場效應管放大器的輸入阻抗很高,因此耦合電容可以容量較小,不必使用電解電容器。
2、場效應管很高的輸入阻抗非常適合作阻抗變換。常用于多級放大器的輸入級作阻抗變換。
3、場效應管可以用作可變電阻。
4、場效應管可以方便地用作恒流源。
5、場效應管可以用作電子開關。
五、場效應管的測試
1、結型場效應管的管腳識別:
場效應管的柵極相當于晶體管的基極,源極和漏極分別對應于晶體管的發(fā)射極和集電極。將萬用表置于R×1k檔,用兩表筆分別測量每兩個管腳間的正、反向電阻。當某兩個管腳間的正、反向電阻相等,均為數(shù)KΩ時,則這兩個管腳為漏極D和源極S(可互換),余下的一個管腳即為柵極G。對于有4個管腳的結型場效應管,另外一極是屏蔽極(使用中接地)。
2、判定柵極
用萬用表黑表筆碰觸管子的一個電極,紅表筆分別碰觸另外兩個電極。若兩次測出的阻值都很小,說明均是正向電阻,該管屬于N溝道場效應管,黑表筆接的也是柵極。
制造工藝決定了場效應管的源極和漏極是對稱的,可以互換使用,并不影響電路的正常工作,所以不必加以區(qū)分。源極與漏極間的電阻約為幾千歐。
注意不能用此法判定絕緣柵型場效應管的柵極。因為這種管子的輸入電阻極高,柵源間的極間電容又很小,測量時只要有少量的電荷,就可在極間電容上形成很高的電壓,容易將管子損壞。
3、估測場效應管的放大能力
將萬用表撥到R×100檔,紅表筆接源極S,黑表筆接漏極D,相當于給場效應管加上1.5V的電源電壓。這時表針指示出的是D-S極間電阻值。然后用手指捏柵極G,將人體的感應電壓作為輸入信號加到柵極上。由于管子的放大作用,UDS和ID都將發(fā)生變化,也相當于D-S極間電阻發(fā)生變化,可觀察到表針有較大幅度的擺動。如果手捏柵極時表針擺動很小,說明管子的放大能力較弱;若表針不動,說明管子已經(jīng)損壞。
由于人體感應的50Hz交流電壓較高,而不同的場效應管用電阻檔測量時的工作點可能不同,因此用手捏柵極時表針可能向右擺動,也可能向左擺動。少數(shù)的管子RDS減小,使表針向右擺動,多數(shù)管子的RDS增大,表針向左擺動。無論表針的擺動方向如何,只要能有明顯地擺動,就說明管子具有放大能力。
本方法也適用于測MOS管。為了保護MOS場效應管,必須用手握住螺釘旋具絕緣柄,用金屬桿去碰柵極,以防止人體感應電荷直接加到柵極上,將管子損壞。
MOS管每次測量完畢,G-S結電容上會充有少量電荷,建立起電壓UGS,再接著測時表針可能不動,此時將G-S極間短路一下即可。
目前常用的結型場效應管和MOS型絕緣柵場效應管的管腳順序如下圖所示。
1、MOS場效應管
即金屬-氧化物-半導體型場效應管,英文縮寫為MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),屬于絕緣柵型。其主要特點是在金屬柵極與溝道之間有一層二氧化硅絕緣層,因此具有很高的輸入電阻(最高可達1015Ω)。它也分N溝道管和P溝道管,符號如圖1所示。通常是將襯底(基板)與源極S接在一起。根據(jù)導電方式的不同,MOSFET又分增強型、耗盡型。所謂增強型是指:當VGS=0時管子是呈截止狀態(tài),加上正確的VGS后,多數(shù)載流子被吸引到柵極,從而“增強”了該區(qū)域的載流子,形成導電溝道。耗盡型則是指,當VGS=0時即形成溝道,加上正確的VGS時,能使多數(shù)載流子流出溝道,因而“耗盡”了載流子,使管子轉向截止。
以N溝道為例,它是在P型硅襯底上制成兩個高摻雜濃度的源擴散區(qū)N+和漏擴散區(qū)N+,再分別引出源極S和漏極D。源極與襯底在內(nèi)部連通,二者總保持等電位。圖1(a)符號中的前頭方向是從外向電,表示從P型材料(襯底)指身N型溝道。當漏接電源正極,源極接電源負極并使VGS=0時,溝道電流(即漏極電流)ID=0。隨著VGS逐漸升高,受柵極正電壓的吸引,在兩個擴散區(qū)之間就感應出帶負電的少數(shù)載流子,形成從漏極到源極的N型溝道,當VGS大于管子的開啟電壓VTN(一般約為+2V)時,N溝道管開始導通,形成漏極電流ID。
國產(chǎn)N溝道MOSFET的典型產(chǎn)品有3DO1、3DO2、3DO4(以上均為單柵管),4DO1(雙柵管)。它們的管腳排列(底視圖)見圖2。
MOS場效應管比較“嬌氣”。這是由于它的輸入電阻很高,而柵-源極間電容又非常小,極易受外界電磁場或靜電的感應而帶電,而少量電荷就可在極間電容上形成相當高的電壓(U=Q/C),將管子損壞。因此了廠時各管腳都絞合在一起,或裝在金屬箔內(nèi),使G極與S極呈等電位,防止積累靜電荷。管子不用時,全部引線也應短接。在測量時應格外小心,并采取相應的防靜電感措施。
MOS場效應管的檢測方法
(1).準備工作
測量之前,先把人體對地短路后,才能摸觸MOSFET的管腳。最好在手腕上接一條導線與大地連通,使人體與大地保持等電位。再把管腳分開,然后拆掉導線。
(2).判定電極
將萬用表撥于R×100檔,首先確定柵極。若某腳與其它腳的電阻都是無窮大,證明此腳就是柵極G。交換表筆重測量,S-D之間的電阻值應為幾百歐至幾千歐,其中阻值較小的那一次,黑表筆接的為D極,紅表筆接的是S極。日本生產(chǎn)的3SK系列產(chǎn)品,S極與管殼接通,據(jù)此很容易確定S極。
(3).檢查放大能力(跨導)
將G極懸空,黑表筆接D極,紅表筆接S極,然后用手指觸摸G極,表針應有較大的偏轉。雙柵MOS場效應管有兩個柵極G1、G2。為區(qū)分之,可用手分別觸摸G1、G2極,其中表針向左側偏轉幅度較大的為G2極。
目前有的MOSFET管在G-S極間增加了保護二極管,平時就不需要把各管腳短路了。
? MOS場效應晶體管使用注意事項。
MOS場效應晶體管在使用時應注意分類,不能隨意互換。MOS場效應晶體管由于輸入阻抗高(包括MOS集成電路)極易被靜電擊穿,使用時應注意以下規(guī)則:
(1).??MOS器件出廠時通常裝在黑色的導電泡沫塑料袋中,切勿自行隨便拿個塑料袋裝。也可用細銅線把各個引腳連接在一起,或用錫紙包裝
(2).取出的MOS器件不能在塑料板上滑動,應用金屬盤來盛放待用器件。
(3). 焊接用的電烙鐵必須良好接地。
(4). 在焊接前應把電路板的電源線與地線短接,再MOS器件焊接完成后在分開。
(5). MOS器件各引腳的焊接順序是漏極、源極、柵極。拆機時順序相反。
(6).電路板在裝機之前,要用接地的線夾子去碰一下機器的各接線端子,再把電路板接上去。
(7). MOS場效應晶體管的柵極在允許條件下,最好接入保護二極管。在檢修電路時應注意查證原有的保護二極管是否損壞。
2、VMOS場效應管
VMOS場效應管(VMOSFET)簡稱VMOS管或功率場效應管,其全稱為V型槽MOS場效應管。它是繼MOSFET之后新發(fā)展起來的高效、功率開關器件。它不僅繼承了MOS場效應管輸入阻抗高(≥108W)、驅動電流?。ㄗ笥?.1μA左右),還具有耐壓高(最高可耐壓1200V)、工作電流大(1.5A~100A)、輸出功率高(1~250W)、跨導的線性好、開關速度快等優(yōu)良特性。正是由于它將電子管與功率晶體管之優(yōu)點集于一身,因此在電壓放大器(電壓放大倍數(shù)可達數(shù)千倍)、功率放大器、開關電源和逆變器中正獲得廣泛應用。
眾所周知,傳統(tǒng)的MOS場效應管的柵極、源極和漏極大大致處于同一水平面的芯片上,其工作電流基本上是沿水平方向流動。VMOS管則不同,從左下圖上可以看出其兩大結構特點:第一,金屬柵極采用V型槽結構;第二,具有垂直導電性。由于漏極是從芯片的背面引出,所以ID不是沿芯片水平流動,而是自重摻雜N+區(qū)(源極S)出發(fā),經(jīng)過P溝道流入輕摻雜N-漂移區(qū),最后垂直向下到達漏極D。電流方向如圖中箭頭所示,因為流通截面積增大,所以能通過大電流。由于在柵極與芯片之間有二氧化硅絕緣層,因此它仍屬于絕緣柵型MOS場效應管。
國內(nèi)生產(chǎn)VMOS場效應管的主要廠家有877廠、天津半導體器件四廠、杭州電子管廠等,典型產(chǎn)品有VN401、VN672、VMPT2等。表1列出六種VMOS管的主要參數(shù)。其中,IRFPC50的外型如右上圖所示。
? VMOS場效應管的檢測方法
(1).判定柵極G
將萬用表撥至R×1k檔分別測量三個管腳之間的電阻。若發(fā)現(xiàn)某腳與其字兩腳的電阻均呈無窮大,并且交換表筆后仍為無窮大,則證明此腳為G極,因為它和另外兩個管腳是絕緣的。
(2).判定源極S、漏極D
? ? 由圖1可見,在源-漏之間有一個PN結,因此根據(jù)PN結正、反向電阻存在差異,可識別S極與D極。用交換表筆法測兩次電阻,其中電阻值較低(一般為幾千歐至十幾千歐)的一次為正向電阻,此時黑表筆的是S極,紅表筆接D極。
(3).測量漏-源通態(tài)電阻RDS(on)
? ? 將G-S極短路,選擇萬用表的R×1檔,黑表筆接S極,紅表筆接D極,阻值應為幾歐至十幾歐。
由于測試條件不同,測出的RDS(on)值比手冊中給出的典型值要高一些。例如用500型萬用表R×1檔實測一只IRFPC50型VMOS管,RDS(on)=3.2W,大于0.58W(典型值)。
(4).檢查跨導
將萬用表置于R×1k(或R×100)檔,紅表筆接S極,黑表筆接D極,手持螺絲刀去碰觸柵極,表針應有明顯偏轉,偏轉愈大,管子的跨導愈高。
注意事項:
(1)VMOS管亦分N溝道管與P溝道管,但絕大多數(shù)產(chǎn)品屬于N溝道管。對于P溝道管,測量時應交換表筆的位置。
(2)有少數(shù)VMOS管在G-S之間并有保護二極管,本檢測方法中的1、2項不再適用。
(3)目前市場上還有一種VMOS管功率模塊,專供交流電機調(diào)速器、逆變器使用。例如美國IR公司生產(chǎn)的IRFT001型模塊,內(nèi)部有N溝道、P溝道管各三只,構成三相橋式結構。
(4)現(xiàn)在市售VNF系列(N溝道)產(chǎn)品,是美國Supertex公司生產(chǎn)的超高頻功率場效應管,其最高工作頻率fp=120MHz,IDSM=1A,PDM=30W,共源小信號低頻跨導gm=2000μS。適用于高速開關電路和廣播、通信設備中。
(5)使用VMOS管時必須加合適的散熱器后。以VNF306為例,該管子加裝140×140×4(mm)的散熱器后,最大功率才能達到30W
(1)場效應管是電壓控制元件,而晶體管是電流控制元件。在只允許從信號源取較少電流的情況下,應選用場效應管;而在信號電壓較低,又允許從信號源取較多電流的條件下,應選用晶體管。
(2)場效應管是利用多數(shù)載流子導電,所以稱之為單極型器件,而晶體管是即有多數(shù)載流子,也利用少數(shù)載流子導電。被稱之為雙極型器件。
(3)有些場效應管的源極和漏極可以互換使用,柵壓也可正可負,靈活性比晶體管好。
(4)場效應管能在很小電流和很低電壓的條件下工作,而且它的制造工藝可以很方便地把很多場效應管集成在一塊硅片上,因此場效應管在大規(guī)模集成電路中得到了廣泛的應用。
1.什么叫場效應管?
Fffect Transistor的縮寫,即為場效應晶體管。一般的晶體管是由兩種極性的載流子,即多數(shù)載流子和反極性的少數(shù)載流子參與導電,因此稱為
雙極型晶體管,而FET僅是由多數(shù)載流子參與導電,它與雙極型相反,也稱為單極型晶體管。FET應用范圍很廣,但不能說現(xiàn)在普及的雙極
型晶體管都可以用FET替代。然而,由于FET的特性與雙極型晶體管的特性完全不同,能構成技術性能非常好的電路。
?2. 場效應管的特征:
(a) JFET的概念圖
?
(b) JFET的符號
圖1? JFET的概念圖、符號
圖1(b)門極的箭頭指向為p指向 n方向,分別表示內(nèi)向為n溝道JFET,外向為p溝道JFET。
???? 圖1(a)表示n溝道JFET的特性例。以此圖為基礎看看JFET的電氣特性的特點。
首先,門極-源極間電壓以0V時考慮(VGS =0)。在此狀態(tài)下漏極-源極間電壓VDS 從0V增加,漏電流ID幾乎與VDS 成比例增加,將此區(qū)域稱為非飽和區(qū)。VDS 達到某值以上漏電流ID 的變化變小,幾乎達到一定值。此時的ID 稱為飽和漏電流(有時也稱漏電流用IDSS 表示。與此IDSS 對應的VDS 稱為夾斷電壓VP ,此區(qū)域稱為飽和區(qū)。
?? 其次在漏極-源極間加一定的電壓VDS (例如0.8V),VGS 值從0開始向負方向增加,ID 的值從IDSS 開始慢慢地減少,對某VGS 值ID =0。將此時的VGS 稱為門極-源極間遮斷電壓或者截止電壓,用VGS (off)示。n溝道JFET的情況則VGS (off) 值帶有負的符號,測量實際的JFET對應ID =0的VGS 因為很困難,在放大器使用的小信號JFET時,將達到ID =0.1-10μA 的VGS 定義為VGS (off) 的情況多些。 關于JFET為什么表示這樣的特性,用圖作以下簡單的說明。?
JFET的工作原理用一句話說,就是"漏極-源極間流經(jīng)溝道的ID ,用以門極與溝道間的pn結形成的反偏的門極電壓控制ID "。更正確地說,ID 流經(jīng)通路的寬度,即溝道截面積,它是由pn結反偏的變化,產(chǎn)生耗盡層擴展變化控制的緣故。
??? 在VGS =0的非飽和區(qū)域,圖10.4.1(a)表示的過渡層的擴展因為不很大,根據(jù)漏極-源極間所加VDS的電場,源極區(qū)域的某些電子被漏極拉去,即從漏極向源極有電流ID 流動。達到飽和區(qū)域如圖10.4.2(a)所示,從門極向漏極擴展的過度層將溝道的一部分構成堵塞型,ID飽和。將這種狀態(tài)稱為夾斷。這意味著過渡層將溝道的一部分阻擋,并不是電流被切斷。
??? 在過渡層由于沒有電子、空穴的自由移動,在理想狀態(tài)下幾乎具有絕緣特性,通常電流也難流動。但是此時漏極-源極間的電場,實際上是兩個過渡層接觸漏極與門極下部附近,由于漂移電場拉去的高速電子通過過渡層。
??? 如圖10.4.1(b)所示的那樣,即便再增加VDS ,因漂移電場的強度幾乎不變產(chǎn)生ID 的飽和現(xiàn)象。
??? 其次,如圖10.4.2(c)所示,VGS 向負的方向變化,讓VGS =VGS (off) ,此時過渡層大致成為覆蓋全區(qū)域的狀態(tài)。而且VDS 的電場大部分加到過渡層上,將電子拉向漂移方向的電場,只有靠近源極的很短部分,這更使電流不能流通。
3.場效應管的分類和結構:
????FET根據(jù)門極結構分為如下兩大類。其結構如圖3所示:
???????????? 面結型FET(簡化為JFET)???????????????? 門極絕緣型FET(簡化為MOS FET)
圖3. FET的結構
各種結構的FET均有門極、源極、漏極3個端子,將這些與雙極性晶體管的各端子對應如表1所示。
JFET是由漏極與源極間形成電流通道(channel)的p型或n型半導體,與門極形成pn結的結構。
另外,門極絕緣型FET是通道部分(Semicoductor)上形成薄的氧化膜(Oxide),并且在其上形成門極用金屬薄膜(Metal)的結構。從制造門極結構材質按其字頭順序稱為MOS FET。
根據(jù)JFET、MOS FET的通道部分的半導體是p型或是n型分別有p溝道元件,n溝道元件兩種類型。
圖3均為n溝道型結構圖。
4.場效應管的傳輸特性和輸出特性
圖4 JFET的特性例(n溝道)
從圖4所示的n溝道JFET的特性例來看,讓VGS 有很小的變化就可控制ID 很大變化的情況是可以理解的。采用JFET設計放大器電路中,VGS 與ID 的關系即傳輸特性是最重要的,其次將就傳輸特性以怎樣方式表示加以說明。
圖5 傳輸特性
這個傳輸特性包括JFET本身的結構參數(shù),例如溝道部分的雜質濃度和載體移動性,以致形狀、尺寸等,作為很麻煩的解析結果可導出如下公式(公式的推導略去)
10.4.1
作為放大器的通常用法是VGS 、VGS (off) < 0(n溝道),VGS 、VGS (off) >0(p溝道)。式(10.4.1)用起來比較困難,多用近似的公式表示如下
將此式就VGS 改寫則得下式
上(10.4.2)?? 下(10.4.3)
若說式(10.4.2)是作為JFET的解析結果推導出來的,不如說與實際的JFET的特性或者式(10.4.1)很一致的作為實驗公式來考慮好些。圖5表示式(10.4.1)、式(10.4.2)及實際的JFET的正規(guī)化傳輸特性,即以ID /IDSS為縱坐標,VGS /VGS (off) 為橫坐標的傳輸特性。n溝道的JFET在VGS < 0的范圍使用時,因VGS(off) < 0,VGS /VGS(off) >0,但在圖5上考慮與實際的傳輸特性比較方便起見,將原點向左方向作為正方向。但在設計半導體電路時,需要使用方便且盡可能簡單的近似式或實驗式。
傳輸特性相當于雙極性晶體管的VBE -IE特性,但VBE -IE 特性是與高頻用、低頻用、功率放大用等用途及品種無關幾乎是同一的。與此相反,JFET時,例如即使同一品種IDSS、VGS(off)的數(shù)值有很大差異,傳輸特性按各產(chǎn)品也不同。
非常好我支持^.^
(44) 100%
不好我反對
(0) 0%
相關閱讀:
( 發(fā)表人:admin )
發(fā)表評論
深度閱讀
- PCB表面鍍金工藝,還有這么多講究! 10-24
- 募資240億,新加坡GP看準數(shù)字化產(chǎn)業(yè)鏈 10-19
- 阿里云輕量云服務器市場“帝位”穩(wěn)固?這位“挑戰(zhàn)者”來勢洶 10-19
- 嵌入式視覺技術如何賦予機器觀察能力 10-18
- 基于FPGA的Aurora 8b10b光通信測試方案 10-01
相關下載
電子百科閱讀排行
- 運算放大器工作原理是什么? 03-09
- 光電耦合器工作原理詳細解說 03-01
- 編碼器工作原理,光電編碼器的工作原理分析 03-08
- PC817光耦的作用和工作原理 09-13
- 半導體制冷片如何散熱?原理解析 11-21
- 可控硅工作原理是什么?(圖) 03-03
- IGBT的工作原理是什么? 03-05
- 電壓比較器,電壓比較器原理是什么? 03-09
- 半導體制冷片工作原理及使用 09-03
- 發(fā)光二極管的工作原理圖解分析 04-13