High-NA EUV 有望將芯片制造工藝縮小到埃級(jí)別,為具有更高晶體管數(shù)量的芯片和全新的工具、材料和系統(tǒng)架構(gòu)浪潮奠定基礎(chǔ)。
在年初的 SPIE 高級(jí)光刻會(huì)議上,英特爾光刻硬件和解決方案總監(jiān) Mark Phillips 重申了公司打算在 2025 年將該技術(shù)部署到大批量生產(chǎn)中。雖然許多觀察家認(rèn)為這個(gè)時(shí)間表是激進(jìn)的,但該公司可能希望避免(或至少延遲)對(duì) EUV 多重圖案工藝的需求。
高數(shù)值孔徑 EUV 系統(tǒng)的好處可以用一個(gè)詞來(lái)概括——分辨率。將孔徑增加到 0.55,而不是當(dāng)前曝光系統(tǒng)中的 0.33,可以成比例地提高可實(shí)現(xiàn)的臨界尺寸,相對(duì)于 0.33 NA 系統(tǒng)的 13nm,0.5 NA EUV 可能低至 8nm。
不幸的是,目前還不存在量產(chǎn)的高數(shù)值孔徑 EUV 光刻機(jī)。在今年五月于 SPIE 上展示的工作中,ASML 和蔡司報(bào)告說(shuō),雖然開(kāi)發(fā)正在按計(jì)劃進(jìn)行,但預(yù)計(jì)要到 2023 年才能安裝第一個(gè)系統(tǒng)。從 0.33NA 到 0.55 NA 的轉(zhuǎn)變沒(méi)有最初引入 EUV 光刻那么激進(jìn),但光刻生態(tài)系統(tǒng)不僅包括對(duì)掃描儀的更改。為了在 2025 年之前將High NA 系統(tǒng)引入批量生產(chǎn),該行業(yè)將需要改進(jìn)光掩模、光刻膠疊層和圖案轉(zhuǎn)移工藝的其他方面。
根本的挑戰(zhàn)是較大的數(shù)值孔徑會(huì)導(dǎo)致 EUV 光子以較低的入射角撞擊晶圓,從而降低焦深。這種較低的角度會(huì)加劇 3D 掩模效果,并使光刻機(jī)中潛像的形成復(fù)雜化。
圖 2:EUV 掩模的橫截面。
掩模有厚度
雖然光學(xué)光刻(365nm 至 193nm)系統(tǒng)使用折射光學(xué)器件,但 EUV 系統(tǒng)依賴于反射光學(xué)器件。入射的 13.5nm 波長(zhǎng)光子撞擊多層鏡——目前由鉬/硅雙層組成,并以所需的角度反射回來(lái)(見(jiàn)圖 2)。光掩模通過(guò)在反射光子的路徑中放置一個(gè)吸收層來(lái)創(chuàng)建其圖案。
雖然將光罩可視化為頂部帶有二維吸收器圖案的平面鏡很方便,但它實(shí)際上是一個(gè)三維物體。反射平面位于多層內(nèi)部,當(dāng)前材料的深度約為 50nm。吸收層具有厚度、折射率 (n) 和消光系數(shù) (k),所有這些都會(huì)影響其產(chǎn)生的強(qiáng)度分布。
在更高的孔徑下,光子以更淺的角度撞擊掩模,相對(duì)于圖案尺寸投射更長(zhǎng)的陰影?!昂诎怠薄⑼耆徽趽醯膮^(qū)域和“明亮”、完全曝光的區(qū)域之間的邊界變?yōu)榛疑瑥亩档土藞D像對(duì)比度。
這些影響并不新鮮。自 90nm 節(jié)點(diǎn)以來(lái),相移掩模( Phase shift masks)已用于生產(chǎn)。2020 年, Fraunhofer Institute、Imec、ASML和蔡司的 Andreas Erdmann 及其同事系統(tǒng)地分析了 EUV 掩模材料對(duì)成像行為的影響。但是,即將采用的High NA EUV 系統(tǒng)將 3D 掩模效果推到了最前沿。有幾個(gè)選項(xiàng)可用于降低有效吸收器(absorber)高度,從而降低 3D 掩模效果的影響。
第一個(gè)也是最簡(jiǎn)單的方法是減小吸收材料的厚度。Imec 高級(jí)圖案化項(xiàng)目總監(jiān) Kurt Ronse 表示,由High NA EUV 圖案化的第一層可能具有相對(duì)寬松的尺寸,約為 28nm。簡(jiǎn)單地降低吸收器高度應(yīng)該提供足夠的對(duì)比度。然而,隨著功能不斷縮小,制造商將需要重新考慮吸收材料。Erdmann 指出,目前使用的鉭基吸收體的光學(xué)特性相對(duì)較差。降低吸收體的折射率將改善劑量-尺寸特性,在恒定曝光劑量下實(shí)現(xiàn)更小的特征。同時(shí),增加消光系數(shù)會(huì)減少三維效應(yīng)。
不幸的是,n和k不是掩模制造商可以簡(jiǎn)單地在工藝刻度盤(pán)上設(shè)置的獨(dú)立參數(shù)。它們是材料屬性,因此彼此相關(guān),并與吸收器的其他特性相關(guān)。為了采用新材料,掩模制造商必須能夠蝕刻它并修復(fù)缺陷。目前用于鉭吸收體的反應(yīng)離子蝕刻是一些候選材料的一種選擇,但新的吸收體仍可能需要新的蝕刻工藝和新的化學(xué)物質(zhì)。接觸層和金屬層有不同的要求,可能需要不同的吸收體。Ronse 說(shuō),此時(shí)還沒(méi)有出現(xiàn)共識(shí)選擇。為了繼續(xù)進(jìn)行工藝開(kāi)發(fā),掩模制造商需要行業(yè)的額外指導(dǎo)。
甚至在更遠(yuǎn)的地方,具有不同消光系數(shù)的新多層mask blank 可以減少反射平面的有效深度。例如,用釕代替鉬將提供 40nm 的反射深度。不過(guò),更換多層材料比更換吸收器還要復(fù)雜。新的mask blank 將需要達(dá)到相同或更好的厚度均勻性和缺陷規(guī)格。Ronse 說(shuō),盡管最終可能有必要,但新的多層不會(huì)很快出現(xiàn)。
掩模制造方面的另一個(gè)變化是從可變形狀光束 (VSB:variable shaped beam) 電子束掩模寫(xiě)入器到多光束掩模寫(xiě)入器。“多光束寫(xiě)入器更適合 EUV,因?yàn)槠毓夤饪棠z需要更多的能量,并且會(huì)產(chǎn)生加熱問(wèn)題。所以你希望能夠使用多光束,即使是簡(jiǎn)單的形狀。但多光束還可以在掩模上制造曲線形狀,而不會(huì)造成寫(xiě)入時(shí)間損失,” D2S首席執(zhí)行官 Aki Fujimura 說(shuō)。
圖案轉(zhuǎn)移變得(更)復(fù)雜
在穿過(guò)光掩模的吸收器圖案后,EUV 光子遇到晶圓及其photoresist blanket。減小的焦深使得同時(shí)保持光刻膠疊層的頂部和硅片平面聚焦變得更加困難。如果焦點(diǎn)錯(cuò)誤使相鄰特征靠得太近,則間隙無(wú)法清除并出現(xiàn)橋接缺陷。如果特征之間的空間太大,則所得到的光刻膠特征太薄并在其自身重量下塌陷。
在 SPIE 上展示的工作中,Tokyo Electron蝕刻產(chǎn)品組的主管 Angélique Raley 解釋說(shuō),如果沒(méi)有足夠的聚焦深度,兩種方案之間已經(jīng)很窄的工藝窗口可能會(huì)完全消失。降低光刻膠厚度既可以提高焦點(diǎn),又可以降低圖案崩塌的風(fēng)險(xiǎn),但也會(huì)帶來(lái)額外的挑戰(zhàn)。
首先是較薄的光刻膠更容易產(chǎn)生隨機(jī)缺陷。EUV 曝光源提供的光子數(shù)量已經(jīng)很低,較薄的光刻膠吸收確實(shí)到達(dá)的光子的能力較差。表現(xiàn)為線邊緣粗糙度的隨機(jī)缺陷已經(jīng)是導(dǎo)致 EUV 良率損失的主要因素。
通常,圖案轉(zhuǎn)移工藝依賴于復(fù)雜的疊層,包括光刻膠、促進(jìn)粘附的底層和硬掩模層。初始步驟在轉(zhuǎn)移到晶圓之前復(fù)制硬掩模中的光刻膠圖案。如果曝光和未曝光的光刻膠特征之間的對(duì)比度較差,則可能需要一個(gè)初步的“descumming”步驟。在殘留物去除和圖案轉(zhuǎn)移蝕刻過(guò)程中,較薄的光刻膠更容易受到腐蝕。這些擔(dān)憂并不新鮮。一段時(shí)間以來(lái),業(yè)界一直在研究替代光刻膠化學(xué)物質(zhì)。盡管如此,還沒(méi)有出現(xiàn)普遍接受的傳統(tǒng)化學(xué)放大光刻膠的繼任者。
在化學(xué)放大的光刻膠中,入射光子激活光酸產(chǎn)生劑分子,每個(gè)分子產(chǎn)生多種光酸。光酸反過(guò)來(lái)使光刻膠的主鏈聚合物去保護(hù),使其可溶于顯影劑。然而,CAR 對(duì) EUV 的吸收能力很差,需要相對(duì)較厚的層來(lái)捕獲足夠的劑量。
一種有希望的替代品是金屬氧化物光刻膠,它使用入射光子來(lái)分解氧化錫納米團(tuán)簇。氧化物簇可溶于顯影劑中,而金屬錫則不溶于。這些是負(fù)性光刻膠。暴露使材料不溶。金屬氧化物本質(zhì)上更耐蝕刻并吸收更多的 EUV 光子,從而使它們能夠以更薄的層實(shí)現(xiàn)可比的結(jié)果。不幸的是,接觸孔,可能是高數(shù)值孔徑 EUV 曝光的第一個(gè)應(yīng)用,需要正色調(diào)光刻膠。
然而,如上所述,圖案轉(zhuǎn)移疊層比光刻膠更多。底層材料,通常是旋涂玻璃或碳化硅,有助于促進(jìn)光刻膠粘附。Raley 證明,這些材料可以擴(kuò)大橋接和圖案塌陷缺陷之間的工藝窗口。
然而,底層也增加了必須去除以將圖案轉(zhuǎn)移到硬掩模的整體厚度。它需要與光刻膠一起變得更薄。然而,杜邦公司的 Jae Hwan Sim 及其同事表明,底層密度取決于厚度。薄的、不夠致密的底層可以允許光酸擴(kuò)散。這種行為會(huì)去除光刻膠底部的光酸,導(dǎo)致顯影不完全。
更小的 CD,更小的景深(depth of field)
同時(shí),0.55 NA 曝光系統(tǒng)減小的景深使得有效掩蔽更加困難。
也就是說(shuō),隨著數(shù)值孔徑的增加,景深比 CD 下降得更快。
由于景深較小,光刻膠必須更薄,以確保曝光特征的頂部和底部都清晰可見(jiàn)。然而,根據(jù) imec 的 Arame Thiam 及其同事的說(shuō)法,近 30% 的原始光刻膠厚度會(huì)在顯影步驟中損失。同時(shí),米勒說(shuō),被圖案化的特征更高更窄??捎玫墓饪棠z較少,但特征需要通過(guò)更長(zhǎng)的蝕刻工藝來(lái)保護(hù)。較薄的底層和硬掩模層可能有助于減少初始硬掩模蝕刻必須去除的材料量。
制造商正在考慮使用金屬氧化物光刻膠,部分是為了提高光刻膠和被去除材料之間的蝕刻選擇性。傳統(tǒng)的等離子體蝕刻具有眾所周知的各向異性,例如以不同的速率蝕刻更窄的特征和更寬的特征,或者以與密集特征不同的速率蝕刻孤立的特征。然而,這些是依賴于模式的,而不是真正的化學(xué)選擇性的結(jié)果。更好的化學(xué)選擇性提高了曝光和未曝光區(qū)域之間的對(duì)比度。
隨機(jī)變化會(huì)影響設(shè)備性能。線邊緣粗糙度、線寬粗糙度、局部CD變化等是由于光刻膠和光刻膠工藝中的不均勻性造成的。在某種程度上,他們測(cè)量了光刻膠成分分子的固有尺寸。如果特征縮小而分子尺寸保持不變,Thiam 說(shuō),線邊緣粗糙度(通常指定為 CD 的 10% 或更?。┛赡軙?huì)變得過(guò)大。干式光刻膠和金屬氧化物光刻膠的核心分子小于化學(xué)放大型光刻膠使用的聚合物鏈,這很有幫助。另一方面,由于光酸擴(kuò)散,CAR 特征趨于模糊。這種模糊會(huì)降低整體分辨率,但可以消除粗糙度。
盡管隨機(jī)變化會(huì)影響設(shè)備性能,但 IBM Research 的 Jennifer Church 和 Luciana Meli 解釋說(shuō),它不一定與良率相關(guān)。在 imec 的測(cè)試中,Thiam 的團(tuán)隊(duì)發(fā)現(xiàn)三種不同的照明(illumination)方案給出了相似的 LER 結(jié)果,但器件良率不同。制程學(xué)習(xí)緩慢的部分原因是準(zhǔn)確的良率分析需要對(duì)開(kāi)路和短路進(jìn)行電氣測(cè)試。
圖 3:使用單次曝光 EUV 光刻技術(shù)制造的納米片晶體管無(wú)法從自對(duì)準(zhǔn)圖案化中受益。垂直蝕刻輪廓需要仔細(xì)優(yōu)化蝕刻工藝。資料來(lái)源:IBM 研究院
溶解度缺陷帶來(lái)電路缺陷
雖然較小的特征更容易出現(xiàn)印刷缺陷和隨機(jī)變化,但兩者的原因不同。根據(jù) William Hinsberg 及其同事的說(shuō)法,當(dāng)預(yù)期模式的某個(gè)元素缺失時(shí),就會(huì)出現(xiàn)隨機(jī)缺陷。一條線可能有中斷,或者相鄰線之間有一座橋。接觸孔可能會(huì)丟失或與其鄰居合并。出現(xiàn)這些限制良率的缺陷是因?yàn)槿毕菸恢玫墓饪棠z溶解度與設(shè)計(jì)預(yù)期的不同。
在化學(xué)放大型光刻膠中,如果photoacid generator和quencher在給定位置處于平衡狀態(tài),則 photoacid reaction會(huì)使所需數(shù)量的光刻膠分子去保護(hù),然后反應(yīng)停止。如果存在過(guò)量的光酸,無(wú)論是因?yàn)楣饪棠z的不均勻性還是入射光子分布的隨機(jī)性,都會(huì)發(fā)生比預(yù)期更多的去保護(hù),并且曝光的光刻膠區(qū)域比預(yù)期的要大。(在positive tone resist中,這意味著掩蔽層和蝕刻特征將比預(yù)期的要小。)使用過(guò)量的quencher,會(huì)發(fā)生相反的情況。隨著光子、photoacid generator和quencher的平均數(shù)量下降,它們分布的標(biāo)準(zhǔn)偏差上升。缺陷變得更有可能。
雖然對(duì)隨機(jī)缺陷的討論通常集中在較小的橫向尺寸上,但重要的是要記住光刻膠層是三維的。對(duì)于給定的特征尺寸,較薄的光刻膠包含較少的 PAG 和猝滅劑分子,并且更容易受到隨機(jī)缺陷的影響。
能量多,光子少
事實(shí)上,EUV 對(duì)工藝工程師提出了雙重挑戰(zhàn)。雖然 Church 估計(jì) EUV 曝光每單位劑量產(chǎn)生的光子少 14 倍,但確實(shí)存在的光子具有大量能量:
其中c是光速,h是普朗克常數(shù)。
業(yè)界將 13.5 nm 光子定義為“極紫外”,但它們實(shí)際上屬于軟 X 射線范圍,攜帶的能量是 193 nm ArF 深紫外光子的 10 倍以上。它們可以穿過(guò)光刻膠層,激發(fā)二次電子或在下面的底層引發(fā)化學(xué)反應(yīng)。底層和光刻膠之間的光子驅(qū)動(dòng)相互作用會(huì)降低曝光和未曝光區(qū)域之間的對(duì)比度。暴露區(qū)域的不完全清除會(huì)導(dǎo)致晶圓特征的不完全蝕刻和潛在的良率損失。
為了最大限度地減少二次反應(yīng)并最有效地利用可用的光子,光刻膠設(shè)計(jì)者試圖增加吸收。
Lam Research 的 Mohammed Alvi 及其同事估計(jì),Lam 的干式光刻膠吸收的光子數(shù)量是化學(xué)放大型光刻膠的三到五倍。[但是增加吸收會(huì)減弱光刻膠層頂部和底部之間的曝光強(qiáng)度。理想的光刻膠需要恰到好處的厚度——足夠厚以保護(hù)底層免受 EUV 光子和掩膜區(qū)域的侵蝕,但又足夠薄以促進(jìn)整個(gè)光刻膠層的完全、均勻曝光。
因?yàn)楣饪棠z層直接吸收 EUV 光子,所以它是圖案轉(zhuǎn)移疊層中最重要的一塊。正如 Chris Mack 所說(shuō),光刻膠捕獲的區(qū)域圖像是唯一可用于流程的設(shè)計(jì)師意圖指示。盡管如此,紐約奧爾巴尼 IBM 研究院的工藝技術(shù)總監(jiān) Nelson Felix 解釋說(shuō),單獨(dú)優(yōu)化光刻膠層是不夠的。堆棧的其余部分提供了許多可調(diào)參數(shù),具有積極和消極的后果。曝光后烘烤的優(yōu)化可以通過(guò)加速或減速脫保護(hù)反應(yīng)來(lái)幫助提高曝光寬容度。
層之間的不相容性會(huì)導(dǎo)致缺陷,或者底層可以幫助彌補(bǔ)光刻膠的缺點(diǎn)。相對(duì)于旋涂光刻膠,Alvi 指出 Lam 的干法光刻膠方案有助于非??焖俚墓に噷W(xué)習(xí)。初級(jí)光反應(yīng)材料的濃度可以在晶圓廠通過(guò)沉積參數(shù)進(jìn)行調(diào)整。干式顯影過(guò)程同樣靈活。
隨著光刻膠層變得更薄,整體光刻膠的特性變得不那么重要,并且光刻膠(暴露與否)與顯影劑和底層之間的界面變得更加重要。例如,圖案塌陷取決于光刻膠、顯影劑和底層材料之間界面的粗糙度、縱橫比和表面能。當(dāng)capillary壓力超過(guò)光刻膠/底層界面處的粘附功時(shí),圖案就會(huì)塌陷。減小線間距會(huì)增加capillary壓力,增加縱橫比也會(huì)增加。由于沒(méi)有capillary作用,干式顯影工藝降低了圖案塌陷的風(fēng)險(xiǎn)。
然而,光刻膠化學(xué)受到光學(xué)和抗蝕刻性要求的限制。優(yōu)化其表面能也很困難。相反,它會(huì)落到底層,為光刻膠粘附提供均勻的表面并介導(dǎo)光刻膠的去除。
“旋鈕”如此之多,時(shí)間如此之短
隨著制造商試圖開(kāi)發(fā)高數(shù)值孔徑的 EUV 曝光工藝,對(duì)整個(gè)光刻膠疊層進(jìn)行共同優(yōu)化的需求為傳統(tǒng)的化學(xué)放大型光刻膠提供了優(yōu)勢(shì)。CAR 光刻膠以數(shù)十年的過(guò)程學(xué)習(xí)和協(xié)同優(yōu)化為后盾。菲利克斯說(shuō),目前,CAR“已經(jīng)實(shí)現(xiàn)了我們這一代人的目標(biāo)”。它是現(xiàn)有技術(shù),背后有完善的生態(tài)系統(tǒng)。盡管如此,高 NA EUV 曝光仍然是一個(gè)階梯式變化。對(duì)于下一代,金屬氧化物光刻膠至少可以達(dá)到同等水平,前提是工藝堆棧的其余部分符合要求。
編輯:黃飛
?
評(píng)論
查看更多