在如今的網(wǎng)絡(luò)時(shí)代,錯(cuò)綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線,通過(guò)深度學(xué)習(xí)解決若干問(wèn)題的案例越來(lái)越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32596 位移傳感器用位置敏感傳感器進(jìn)行位移測(cè)試的技術(shù)研究霍爾傳感器應(yīng)用于采集與顯示信號(hào)系統(tǒng)中的設(shè)計(jì)方案基于AT89C51的燃?xì)庑孤﹫?bào)警器設(shè)計(jì)基于石墨烯的光學(xué)生物傳感器的研究進(jìn)展基于神經(jīng)網(wǎng)絡(luò)技術(shù)的虛擬傳感器溫度
2014-12-16 13:59:11
多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22
,特別是溫度的影響是測(cè)量誤差的主要,為保證SAW壓力傳感器高準(zhǔn)確度和高靈敏度測(cè)量,必須進(jìn)行有效的溫度補(bǔ)償。本文將神經(jīng)網(wǎng)絡(luò)和模糊控制技術(shù)相結(jié)合,對(duì)SAW壓力傳感器進(jìn)行智能化溫度補(bǔ)償,通過(guò)此方法進(jìn)行的改進(jìn)
2018-10-24 11:36:52
神經(jīng)網(wǎng)絡(luò)50例
2012-11-28 16:49:56
神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24
03_深度學(xué)習(xí)入門(mén)_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05
神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23
第1章 概述 1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展 1.2 生物神經(jīng)元 1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成 第2章人工神經(jīng)網(wǎng)絡(luò)基本模型 2.1 MP模型 2.2 感知器模型 2.3 自適應(yīng)線性
2012-03-20 11:32:43
將神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53
神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介
2012-08-05 21:01:08
近年來(lái),深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機(jī)器學(xué)習(xí)特征工程的時(shí)代,將人工智能的浪潮推到了歷史最高點(diǎn)。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對(duì)超參數(shù)的要求也越來(lái)越嚴(yán)格
2019-09-11 11:52:14
制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開(kāi)辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動(dòng)駕駛儀的短時(shí)輔助模式到專職無(wú)人駕駛旅行的自動(dòng)駕駛,汽車制造業(yè)一直在尋求讓響應(yīng)速度更快、識(shí)別準(zhǔn)確度更高的方法,而深度
2017-12-21 17:11:34
基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13
請(qǐng)問(wèn):我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒(méi)有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08
習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對(duì)于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)是如何一直沒(méi)有具體實(shí)現(xiàn)一下:現(xiàn)看到一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對(duì)應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個(gè)數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21
前言前面我們通過(guò)notebook,完成了在PYNQ-Z2開(kāi)發(fā)板上編寫(xiě)并運(yùn)行python程序。我們的最終目的是基于神經(jīng)網(wǎng)絡(luò),完成手寫(xiě)的數(shù)字識(shí)別。在這之前,有必要講一下神經(jīng)網(wǎng)絡(luò)的基本概念和工作原理。何為
2019-03-03 22:10:19
上的USB攝像頭作為主要傳感器,采集得到的前方道路圖像經(jīng)過(guò)數(shù)據(jù)預(yù)處理后,接入神經(jīng)網(wǎng)絡(luò)的輸入層,由神經(jīng)網(wǎng)絡(luò)的輸出層狀態(tài)將生成控制信號(hào),控制小車的直走、左轉(zhuǎn)、右轉(zhuǎn)、與停止。交通標(biāo)識(shí)識(shí)別功能同樣使用USB
2019-03-02 23:10:52
電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁(yè)面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門(mén)資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14
今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺(jué)不是很難,只不過(guò)一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競(jìng)爭(zhēng)學(xué)習(xí)的一個(gè)代表,競(jìng)爭(zhēng)型學(xué)習(xí)
2019-07-21 04:30:00
`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個(gè)隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實(shí)由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò):神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過(guò)程而開(kāi)發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過(guò)程看成是一個(gè)“網(wǎng)絡(luò)”,通過(guò)不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)在傳感器數(shù)據(jù)融合中的應(yīng)用針對(duì)壓力傳感器對(duì)溫度的交叉靈敏度,采用BP 人工神經(jīng)網(wǎng)絡(luò)法對(duì)其進(jìn)行數(shù)據(jù)融合處理,消除溫度對(duì)壓力傳感器的影響,大大提高了傳感器的穩(wěn)定性及其精度,效果良好。關(guān)鍵詞
2009-08-11 20:23:46
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48
,如何用一個(gè)神經(jīng)網(wǎng)絡(luò),寫(xiě)出一套機(jī)器學(xué)習(xí)算法,來(lái)自動(dòng)識(shí)別未知的圖像。一個(gè) 4 層的神經(jīng)網(wǎng)絡(luò)輸入層經(jīng)過(guò)幾層算法得到輸出層 實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法有很多,近年被人們討論得多的方法就是深度學(xué)習(xí)。 深度學(xué)習(xí)是一種實(shí)現(xiàn)
2018-05-11 11:43:14
簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
圖卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29
摘要: 在2018年3月13日云棲社區(qū),來(lái)自哈爾濱工業(yè)大學(xué)的沈俊楠分享了典型模式-深度神經(jīng)網(wǎng)絡(luò)入門(mén)。本文詳細(xì)介紹了關(guān)于深度神經(jīng)網(wǎng)絡(luò)的發(fā)展歷程,并詳細(xì)介紹了各個(gè)階段模型的結(jié)構(gòu)及特點(diǎn)。哈爾濱工業(yè)大學(xué)的沈
2018-05-08 15:57:47
本文使用keras搭建神經(jīng)網(wǎng)絡(luò),實(shí)現(xiàn)基于深度學(xué)習(xí)算法的股票價(jià)格預(yù)測(cè)。本文使用的數(shù)據(jù)來(lái)源為tushare,一個(gè)免費(fèi)開(kāi)源接口;且只取開(kāi)票價(jià)進(jìn)行預(yù)測(cè)。import numpy as npimport
2022-02-08 06:40:03
全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42
【深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37
《深度學(xué)習(xí)工程師-吳恩達(dá)》03卷積神經(jīng)網(wǎng)絡(luò)—深度卷積網(wǎng)絡(luò):實(shí)例探究 學(xué)習(xí)總結(jié)
2020-05-22 17:15:57
以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)器上),設(shè)備端采集到數(shù)據(jù)通過(guò)網(wǎng)絡(luò)發(fā)送給服務(wù)器做inference(推理),結(jié)果再通過(guò)網(wǎng)絡(luò)返回給設(shè)備端。如今越來(lái)越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40
卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50
卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢(shì),作為一個(gè)
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
模型。第 3 部分將研究使用專用 AI 微控制器測(cè)試模型的特定用例。什么是卷積神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)是系統(tǒng)或神經(jīng)元結(jié)構(gòu),使人工智能能夠更好地理解數(shù)據(jù),使其能夠解決復(fù)雜的問(wèn)題。雖然有許多網(wǎng)絡(luò)類型,但本系
2023-02-23 20:11:10
什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22
我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制器的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2021-07-26 09:46:37
【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署激光雷達(dá)可以準(zhǔn)確地完成三維空間的測(cè)量,具有抗干擾能力強(qiáng)、信息豐富等優(yōu)點(diǎn),但受限于數(shù)據(jù)量大、不規(guī)則等難點(diǎn),基于深度神經(jīng)網(wǎng)絡(luò)
2021-12-21 07:59:18
基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署
2021-01-04 06:26:23
神經(jīng)網(wǎng)絡(luò)可以建立參數(shù)Kp,Ki,Kd自整定的PID控制器?;贐P神經(jīng)網(wǎng)絡(luò)的PID控制系統(tǒng)結(jié)構(gòu)框圖如下圖所示:控制器由兩部分組成:經(jīng)典增量式PID控制器;BP神經(jīng)網(wǎng)絡(luò)...
2021-09-07 07:43:47
摘 要:本文給出了采用ADXL335加速度傳感器來(lái)采集五個(gè)手指和手背的加速度三軸信息,并通過(guò)ZigBee無(wú)線網(wǎng)絡(luò)傳輸來(lái)提取手勢(shì)特征量,同時(shí)利用BP神經(jīng)網(wǎng)絡(luò)算法進(jìn)行誤差分析來(lái)實(shí)現(xiàn)手勢(shì)識(shí)別的設(shè)計(jì)方法
2018-11-13 16:04:45
基于BP神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:37:27
FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問(wèn)題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13
基于RBF神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:38:52
FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問(wèn)題方面已大獲成功。在當(dāng)前案例中,針對(duì)在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41
如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11
某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門(mén)陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2021-05-21 06:35:27
稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢(shì)在于:巨量并行性;信息處理和存儲(chǔ)單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號(hào)處理器DSP
2019-08-08 06:11:30
小白求助,求大神分享傳感器的設(shè)計(jì)方案
2021-10-18 06:01:15
FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門(mén)陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20
有提供編寫(xiě)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)程序服務(wù)的嗎?
2011-12-10 13:50:46
求助地震波
神經(jīng)網(wǎng)絡(luò)程序,共同交流?。?/div>
2013-05-11 08:14:19
小女子做基于labview的蒸發(fā)過(guò)程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問(wèn)這個(gè)控制方法可以嗎?有誰(shuí)會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
求助大神 小的現(xiàn)在有個(gè)難題: 一組車重實(shí)時(shí)數(shù)據(jù) 對(duì)應(yīng)一個(gè)車重的最終數(shù)值(一個(gè)一維數(shù)組輸入對(duì)應(yīng)輸出一個(gè)數(shù)值) 這其中可能經(jīng)過(guò)均值、方差、去掉N個(gè)最大值、、、等等的計(jì)算 我的目的就是弄清楚這個(gè)中間計(jì)算過(guò)程 最近實(shí)在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請(qǐng)教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44
1、加速神經(jīng)網(wǎng)絡(luò)的必備開(kāi)源項(xiàng)目 到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)?這個(gè)問(wèn)題其實(shí)我們不適合回答,但是FPGA廠商是的實(shí)際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒(méi)有在
2022-10-24 16:10:50
2018年全球第三大風(fēng)力發(fā)電機(jī)制造商論文下載地址:https://arxiv.org/pdf/1902.05625v1.pdf論文代碼地址:https://github.com/BinhangYuan/WaveletFCNN需要簡(jiǎn)單儲(chǔ)備的知識(shí)離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)回顧離散小波變
2021-07-12 07:38:36
最簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36
解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺(jué)實(shí)踐
2020-06-14 22:21:12
CV之YOLOv3:深度學(xué)習(xí)之計(jì)算機(jī)視覺(jué)神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25
原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測(cè)等機(jī)器
2021-12-14 07:35:25
`將非局部計(jì)算作為獲取長(zhǎng)時(shí)記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長(zhǎng)時(shí)記憶(long-range dependency)至關(guān)重要。對(duì)于序列數(shù)據(jù)(例如語(yǔ)音、語(yǔ)言),遞歸運(yùn)算
2018-11-12 14:52:50
為使較低精度傳感器獲得較高精度,以提高傳感器的性能價(jià)格比。本文提出人工神經(jīng)網(wǎng)絡(luò)提高傳感器精度的新方法。該神經(jīng)網(wǎng)絡(luò)可以看成是一個(gè)可以濾去傳感器信號(hào)噪聲的非線性濾
2009-06-16 16:15:0212 提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測(cè)與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測(cè)輸出和傳感器實(shí)際輸出之差來(lái)判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-06-23 08:57:0327 該文介紹了一種基于人工神經(jīng)網(wǎng)絡(luò)進(jìn)行氣體傳感器故障檢測(cè)的新方法,文中利用單個(gè)氣體傳感器的輸出信息為氣體傳感器建立了動(dòng)態(tài)非線性神經(jīng)網(wǎng)絡(luò)氣體傳感器輸出模型,并利用該
2009-06-26 11:37:2613 介紹了用神經(jīng)網(wǎng)絡(luò)校正傳感器系統(tǒng)非線性誤差的原理和方法,提出了基于BP 神經(jīng)網(wǎng)絡(luò)傳感器非線性誤差校正及其模型、算法與實(shí)現(xiàn)技術(shù)。通過(guò)計(jì)算機(jī)仿真與應(yīng)用,顯示出這種逆模型不但
2009-06-29 10:22:0612 簡(jiǎn)要分析由MEMS 工藝制成的新型微氣體傳感器陣列的原理及其優(yōu)點(diǎn),在此基礎(chǔ)上,應(yīng)用人工神經(jīng)網(wǎng)絡(luò)對(duì)氣體傳感器陣列的輸出進(jìn)行模式分類、識(shí)別,實(shí)現(xiàn)對(duì)單一或混合氣體的有選擇性探測(cè)
2009-06-30 10:03:328 提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測(cè)與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測(cè)輸出和傳感器實(shí)際輸出之差來(lái)判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-07-04 11:14:5318 為使較低精度傳感器獲得較高精度,以提高傳感器的性能價(jià)格比。本文提出人工神經(jīng)網(wǎng)絡(luò)提高傳感器精度的新方法。該神經(jīng)網(wǎng)絡(luò)可以看成是一個(gè)可以濾去傳感器信號(hào)噪聲的非線性濾
2009-07-07 09:01:4826 大型熱力控制系統(tǒng)必須能夠檢測(cè)傳感器故障,并采取相應(yīng)的措施,保證控制過(guò)程的順利進(jìn)行。提出了一種基于Powell 神經(jīng)網(wǎng)絡(luò)的故障檢測(cè)新方法,為系統(tǒng)中每一個(gè)傳感器構(gòu)造一個(gè)神經(jīng)網(wǎng)絡(luò)
2009-07-07 09:21:076 本文基于神經(jīng)網(wǎng)絡(luò)可以對(duì)非線性系統(tǒng)的任意逼近能力, 建立了六維腕力傳感器的補(bǔ)償模糊神經(jīng)網(wǎng)絡(luò)模型, 仿真結(jié)果表明, 這種補(bǔ)償模糊神經(jīng)網(wǎng)絡(luò)對(duì)六維腕力傳感器非線性系統(tǒng)逼近精度
2009-07-14 09:22:2015 提出了基于人工神經(jīng)網(wǎng)絡(luò)進(jìn)行多維力傳感器靜態(tài)解耦的方法。
2009-07-18 10:06:0010 研究了基于神經(jīng)網(wǎng)絡(luò)的多傳感器融合技術(shù),并將其應(yīng)用于自主吸塵機(jī)器人中。給出了神經(jīng)網(wǎng)絡(luò)傳感器融合技術(shù)的基本原理,探索了改進(jìn)的BP 信息融合算法,使得改進(jìn)后的算法在收斂
2009-12-31 12:00:1411 基于神經(jīng)網(wǎng)絡(luò)的開(kāi)關(guān)磁阻電機(jī)無(wú)位置傳感器控制-夏長(zhǎng)亮
2017-01-21 11:54:395 《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》講義
2017-07-20 08:58:240 由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會(huì)覺(jué)得兩者沒(méi)有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01556 本文檔的詳細(xì)介紹的是快速了解神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的教程資料免費(fèi)下載主要內(nèi)容包括了:機(jī)器學(xué)習(xí)概述,線性模型,前饋神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò),循環(huán)神經(jīng)網(wǎng)絡(luò),網(wǎng)絡(luò)優(yōu)化與正則化,記憶與注意力機(jī)制,無(wú)監(jiān)督學(xué)習(xí),概率圖模型,玻爾茲曼機(jī),深度信念網(wǎng)絡(luò),深度生成模型,深度強(qiáng)化學(xué)習(xí)
2019-02-11 08:00:0025 隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,許多研究者嘗試?yán)?b class="flag-6" style="color: red">深度學(xué)習(xí)來(lái)解決文本分類問(wèn)題,特別是在卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)方面,出現(xiàn)了許多新穎且有效的分類方法。對(duì)基于深度神經(jīng)網(wǎng)絡(luò)的文本分類問(wèn)題進(jìn)行分析,介紹
2021-03-10 16:56:5636 在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:442251 來(lái)源:青榴實(shí)驗(yàn)室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01549 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。
2023-05-15 14:19:181096 來(lái)源:青榴實(shí)驗(yàn)室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19945 卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30804 這項(xiàng)研究開(kāi)發(fā)了一款基于保形(conformal)柔性應(yīng)變傳感器陣列和深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的智能血壓和心功能監(jiān)測(cè)系統(tǒng)。該傳感器具有高靈敏度、高線性度、快速響應(yīng)與恢復(fù)、高各向同性等多種優(yōu)點(diǎn)。
2023-08-20 09:53:20554 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361860 深度神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的一種框架,它是一種具備至少一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類似
2023-10-11 09:14:33362
已全部加載完成
評(píng)論
查看更多