智能圖像傳感器涉及到計算機(jī)、圖像處理、模式識別、人工智能、信號處理、光機(jī)電一體化等多個領(lǐng)域,主要分為硬件系統(tǒng)和軟件系統(tǒng)兩大部分。
國家標(biāo)準(zhǔn)將傳感器定義為:能感受規(guī)定的被測量,并按照一定規(guī)律轉(zhuǎn)換成為可用輸出信號的器件或裝置,通常傳感器包括兩部分:敏感元件和轉(zhuǎn)換器。IEEE協(xié)會從最小化傳感器結(jié)構(gòu)的角度,將能提供受控量或待感知量大小且能典型簡化其應(yīng)用于網(wǎng)絡(luò)環(huán)境的集成的傳感器稱為智能傳感器。其本質(zhì)特征為集感知、信息處理與通信于一體,具有自診斷、自校正、自補(bǔ)償?shù)裙δ堋?/p>
目前智能傳感器廣泛應(yīng)用于消費(fèi)電子、汽車工業(yè)、航空航天、機(jī)械、化工及醫(yī)藥等領(lǐng)域。隨著物聯(lián)網(wǎng)、移動互聯(lián)網(wǎng)等新興產(chǎn)業(yè)的興起,智能傳感器在智能農(nóng)業(yè)、智能工業(yè)、智能交通、智能電網(wǎng)、健康醫(yī)療、智能穿戴等領(lǐng)域,都有著廣闊的應(yīng)用空間。
而智能圖像傳感器作為智能傳感器的一種,目前被廣泛應(yīng)用在各類消費(fèi)電子中。智能圖像傳感器是由圖像傳感器和視覺軟件組成,能夠捕捉和分析視覺信息,代替人眼做各種測量和判斷的設(shè)備。主要由圖像傳感器和視覺軟件組成,前者用于捕捉圖像,后者用于分析“看到”的內(nèi)容。
一、智能圖像傳感器的分類
典型的圖像傳感器可以分為:圖像采集、圖像處理和運(yùn)動控制三個部分。它綜合了光學(xué)、機(jī)械、電子、計算機(jī)軟硬件等方面的技術(shù),涉及到計算機(jī)、圖像處理、模式識別、人工智能、信號處理、光機(jī)電一體化等多個領(lǐng)域。
根據(jù)感光器件的不同,圖像傳感器可以分為CCD和CMOS兩種。兩者都執(zhí)行相同的步驟:光電轉(zhuǎn)換——電荷累積——輸出——轉(zhuǎn)換——放大。
CCD成像儀主要由兩部分構(gòu)成:濾色器和像素陣列,微透鏡將光線漏光到每個像素的光敏部分上,當(dāng)光子通過濾色器陣列時,像素傳感器開始捕獲通過的光的強(qiáng)度,然后對光信號進(jìn)行組合,統(tǒng)一輸送到外部線路進(jìn)行A/D處理。與CCD相比,CMOS是具有像素傳感器陣列的集成電路,其每個像素傳感器都有自己的光感傳感器、信號放大器和像素選擇開關(guān)。
智能傳感器的實(shí)現(xiàn)結(jié)構(gòu)主要有三種:非集成化實(shí)現(xiàn)、混合形式、集成化實(shí)現(xiàn)。按照智能化的程度,分別對應(yīng):初級、中級和高級形式。MEMS傳感器是指采用微機(jī)械加工和半導(dǎo)體工藝制造而成的新型傳感器。與傳統(tǒng)的機(jī)械傳感器相比,MEMS傳感器具有體積小、重量輕、成本低、功耗低、可靠性高、適于批量化生產(chǎn)、易于集成和實(shí)現(xiàn)智能化等特點(diǎn)。從集成化的角度來說,MEMS傳感器是智能傳感器的未來。
二、智能圖像傳感器應(yīng)用廣泛,攝像頭和激光雷達(dá)受青睞
20世紀(jì)90年代末期,隨著CMOS圖像傳感器工藝和設(shè)計技術(shù)的進(jìn)步,市場份額不斷擴(kuò)大,近年來市場占有率已經(jīng)超過90%,取代CCD成為主流。
從下游應(yīng)用領(lǐng)域分布來看,當(dāng)前CMOS圖像傳感器主要應(yīng)用于智能手機(jī)和平板電腦,占比下游應(yīng)用70%左右。隨著嵌入式數(shù)字成像技術(shù)迅速擴(kuò)展,未來用于智能手機(jī)和平板電腦的CMOS的比例將會逐漸降低,汽車系統(tǒng)將成為CMOS圖像傳感器增長最快的應(yīng)用。
從應(yīng)用形式來看,CMOS傳感器的主要應(yīng)用為攝像頭模組(CCD)。智能圖像傳感器的應(yīng)用組件攝像頭目前已廣泛應(yīng)用于各類消費(fèi)電子中,如:手機(jī)、電腦、可穿戴設(shè)備等。目前手機(jī)、電腦用攝像頭是攝像頭模組下游應(yīng)用的最廣泛領(lǐng)域之一,未來隨著ADAS系統(tǒng)的廣泛普及和無人車的推出,車感攝像頭領(lǐng)域?qū)瓉硪惠啽l(fā)。
相比攝像頭,激光雷達(dá)的3D成像更加精準(zhǔn)是無人車視覺系統(tǒng)的首選,是目前資本市場追捧的熱點(diǎn)。激光雷達(dá)在探測距離、探測精準(zhǔn)度、天氣適應(yīng)性和夜視功能方面具有極大的優(yōu)勢,將會成為未來高端成像設(shè)備的主流。
與相機(jī)圖像不同,激光雷達(dá)可通過測量光線的飛行時間,測量物體距離。除此之外,相機(jī)的數(shù)據(jù)源單一,不可靠,雖具有完全360°的覆蓋范圍,但很容易被迎面而來的光線、黃昏或陰影中看不到東西所遮擋,無法區(qū)分遠(yuǎn)處的重要場景。而且由于激光雷達(dá)成本過高,目前各種成像技術(shù)多以攝像頭運(yùn)用為主,但未來隨激光雷達(dá)成本的降低,其在各個領(lǐng)域?qū)z像頭的替代作用也將凸顯。
另外,無人機(jī)也是智能圖像傳感器主要的應(yīng)用之一。目前圖像傳感器主要是以相機(jī)模組的方式,搭載在無人機(jī)上,作航拍或者地圖測繪等需要成像的領(lǐng)域。隨著無人機(jī)市場的爆發(fā),無人機(jī)用攝像頭也將會迎來新增長,預(yù)計到2020年無人機(jī)用攝像頭市場規(guī)??蛇_(dá)1億美元。
三、智能圖像傳感器的技術(shù)現(xiàn)狀及未來發(fā)展趨勢
智能傳感器的基本技術(shù)主要包括:功能集成化、人工智能材料的應(yīng)用、微機(jī)械加工技術(shù)、三維集成電路、圖像處理及DSP(數(shù)字信號處理)、數(shù)據(jù)融合理論(嵌入式數(shù)字成像技術(shù))。
有兩種設(shè)計結(jié)構(gòu),分別是:數(shù)字傳感器信號處理(DSSP)和數(shù)字控制的模擬信號處理(DCASP),一般采用DSSP模式,通常至少包括兩個傳感器:被測量傳感器(如圖像傳感器)和補(bǔ)償傳感器,傳感信號經(jīng)由多路調(diào)制器送到A/D轉(zhuǎn)換器,然后在送到微處理器進(jìn)行信號補(bǔ)償和校正,測量的穩(wěn)定性只能由A/D轉(zhuǎn)換器的穩(wěn)定性決定。
具有微米量級特征的MEMS傳感器可以完成某些傳統(tǒng)機(jī)械傳感器所不能實(shí)現(xiàn)的功能。因此,MEMS傳感器正逐步取代傳統(tǒng)機(jī)械傳感器的主導(dǎo)地位,在消費(fèi)電子產(chǎn)品、汽車工業(yè)、航空航天、機(jī)械、化工及醫(yī)藥等領(lǐng)域得到廣泛的應(yīng)用。
智能圖像傳感器涉及到計算機(jī)、圖像處理、模式識別、人工智能、信號處理、光機(jī)電一體化等多個領(lǐng)域,主要分為硬件系統(tǒng)和軟件系統(tǒng)兩大部分。硬件系統(tǒng)包含了處理器、存儲器和控制器,軟件系統(tǒng)主要包括各種驅(qū)動和算法。
目前較為先進(jìn)的應(yīng)用主要有:激光雷達(dá)、3D成像和傳感技術(shù)、虹膜識別。
激光雷達(dá)按有無機(jī)械旋轉(zhuǎn)部件分類,包括機(jī)械激光雷達(dá)和固態(tài)激光雷達(dá)。根據(jù)線束數(shù)量的多少,又可分為單線束激光雷達(dá)與多線束激光雷達(dá)。而未來的發(fā)展方向?qū)臋C(jī)械走向固態(tài),從單線束走向多線束。隨著激光雷達(dá)技術(shù)的推進(jìn),微型化、低成本、高性能將會成為必然趨勢,固態(tài)激光雷達(dá)也將會成為最終的激光雷達(dá)形式。
3D成像能夠識別視野內(nèi)空間每個點(diǎn)位的三維坐標(biāo)信息,從而使得計算機(jī)得到空間的3D數(shù)據(jù)并能夠復(fù)原完整的三維世界并實(shí)現(xiàn)各種智能的三維定位。目前在高端市場如:醫(yī)療和工業(yè)領(lǐng)域的應(yīng)用逐漸成熟,呈現(xiàn)出加速趨勢。
虹膜識別是一種新興的生物特征識別技術(shù),通過采集虹膜圖像,提取和比對虹膜紋理特征點(diǎn)之間的差別來識別身份,相比于傳統(tǒng)的指紋、人臉等生物特征識別技術(shù)具有唯一性、穩(wěn)定性和高度的防偽性等優(yōu)勢。對比其他生物測定技術(shù)只能讀取13-60個特征點(diǎn),虹膜測定技術(shù)可以讀取266個特征點(diǎn),準(zhǔn)確率高達(dá)99.29%。虹膜識別大量應(yīng)用于安防、監(jiān)控、特種行業(yè)身份識別等領(lǐng)域,但沒有突破消費(fèi)級電子市場,個中原因在于以下三大挑戰(zhàn):虹膜算法,基于互聯(lián)網(wǎng)的安全解決方案以及虹膜支付的生態(tài)建設(shè)。
評論
查看更多