與鋰二氧化錳 (LiMnO2) 等電池化學(xué)物質(zhì)相比,鋰亞硫酰氯 (LiSOCI2) 電池可實現(xiàn)更高的能量密度和更出色的每瓦成本比,因此普遍用于智能流量計。但 LiSOCl2 電池有一個缺點,即對峰值負(fù)載的響應(yīng)性較差,這可能導(dǎo)致電池可用容量降低。因此在本文中,我們將探討一種降低電池峰值負(fù)載(數(shù)百毫安級)的有效方法,從而幫助延長電池壽命。
更大程度提高電池可用容量是十分重要的,因為這可以使系統(tǒng)設(shè)計實現(xiàn):
·在使用相同電池的條件下增加儀表讀數(shù)次數(shù)和數(shù)據(jù)傳輸量。
·在使用相同電池的條件下實現(xiàn)更長的壽命。
·在工作壽命不變的情況下減小電池尺寸。
通過對更多類型的流量計應(yīng)用相同的設(shè)計,以上優(yōu)勢可更大程度地降低電池成本、維護(hù)成本和開發(fā)成本。
設(shè)計難題:延長電池壽命
成功的儀表設(shè)計需要實現(xiàn)長久的運(yùn)行時間(大于 15 年)以及閥控制、數(shù)據(jù)記錄和數(shù)據(jù)傳輸?shù)裙δ?。延長電池壽命是一種延長儀表運(yùn)行時間的有效方式。但是,如果不使用任何電源緩沖器,直接將電池與負(fù)載進(jìn)行連接,那么儀表復(fù)雜的負(fù)載曲線可能會縮短電池壽命。
根據(jù)電流電平不同,可以將標(biāo)準(zhǔn)儀表的負(fù)載消耗曲線分為待機(jī)模式、中間模式和工作模式。每種模式對電池壽命的影響不同:
·待機(jī)模式的電流消耗為 5μA 至 100μA。主要耗電項為計量、微控制器和保護(hù)電路的靜態(tài)電流 (IQ)。雖然其絕對值非常小,但通常是影響儀表壽命的主要因素。處于待機(jī)模式時,連接的任一直流/直流轉(zhuǎn)換器的 IQ 均應(yīng)處于納安級,電源緩沖器的泄漏值應(yīng)處于低水平,從而提高效率。
·中間模式的電流消耗為 2mA 至 10mA。通常情況下,這類負(fù)載來自于 RX 階段的模擬前端。在此模式下,電源緩沖器的效率對于更大程度地減小能量損耗十分重要。
·工作模式下的電流消耗最高。在工作模式下,負(fù)載通常來自于 TX 階段的驅(qū)動閥和模擬前端,需要 20mA 至幾百毫安的電流。直接從 LiSOCl2 電池中獲取電流會使電池容量嚴(yán)重降額。
表 1 顯示了在不同的負(fù)載和溫度條件下,Saft LS33600 電池在 17Ah 額定容量基礎(chǔ)上的容量降額情況。在工作溫度為 +20°C 時,200mA 負(fù)載電流會導(dǎo)致容量降額 42%。因此,絕不可直接使用電池對負(fù)載供電。只有使用低泄漏的電源緩沖器,才可以將峰值電流限制在 10mA 以下。
表 1:Saft Batteries LS33600 電池的容量和電流特性
TI TPS61094 60nA IQ 降壓/升壓轉(zhuǎn)換器可在延長電池壽命的同時,在待機(jī)模式、中間模式和工作模式下保持出色效率。TPS61094 主要具有三個好處:
·在寬負(fù)載范圍內(nèi)實現(xiàn)超高效率。在 VOUT = 3.3V 且 VIN 大于 1.5V 的條件下,負(fù)載為 5μA 至 250mA 時,TPS61094 可實現(xiàn)大于 90% 的平均效率,在大部分流量計用例中實現(xiàn)高效電源。
·限制電池的峰值電流。在 Buck_on 模式下為超級電容器充電時,或在補(bǔ)充模式下使用電池對 VOUT 端的重負(fù)載供電時,TPS61094 均可以限制其峰值輸入電流。圖 1 顯示了 TPS61094 的配置,圖 2 顯示的是 VOUT 端有 200mA 和 2s 負(fù)載脈沖時的電池峰值電流。在第 1 階段重負(fù)載條件下,峰值電流限制在 7mA。在第 2 階段負(fù)載釋放后,器件以 10mA 的恒定電流對超級電容器充電。當(dāng)超級電容器的電壓經(jīng)過充電恢復(fù)至 2.0V 時,器件會停止充電,但仍處于 Buck_on 模式。
圖 1:TPS61094 的配置
圖 2:示波器顯示重負(fù)載下的電池峰值電流結(jié)果
·在整個溫度范圍內(nèi),超級電容器可提供的能量保持不變。通常情況下,使用混合層電容器 (HLC) 或雙電層電容器 (EDLC) 作為電源緩沖器可提高脈沖負(fù)載能力。但是,這些無源器件內(nèi)存儲的能量取決于電池電壓。溫度降低時,電池電壓也會隨之下降,這會削弱 HLC 或 EDLC 的脈沖負(fù)載能力,并增大電池的電源電流。要解決這個問題,TPS61094 會使超級電容器的電壓保持穩(wěn)定,無論溫度如何變化都不會改變電壓。
超級電容器內(nèi)的可用能量取決于超級電容器的容量、設(shè)定的超級電容器兩端最大電壓和 TPS61094 的欠壓鎖定功能。超級電容器的可用能量越多,在連續(xù)重負(fù)載條件下的工作時間越長。
圖 3 分別顯示了采用 TPS61094 或僅使用超級電容器的電源緩沖器解決方案。在 TPS61094 解決方案中,超級電容器電壓設(shè)定為 2V。TPS61094 為連續(xù)負(fù)載供電時,可從超級電容器吸收功率,直到超級電容器電壓降為 0.6V。因此,可以借助公式 1 計算超級電容器上的可用能量:
其中 ?是轉(zhuǎn)換器的平均效率。
在溫度為 –40°C 的最差情況下,TPS61094 可在輸入電壓為 2V 至 0.6V、電流為 150mA 時實現(xiàn) 92% 的平均效率。公式 2 顯示計算結(jié)果為:
E = 12 × 3.3 × 22-12 × 3.3 × 0.62 × 0.9232=5.5447 J (2)
圖 3:TPS61094 與 HLC/EDLC 配置
在 HLC 或 EDLC 解決方案中,可用能量隨著電池電壓的變化而變化。在溫度為 –40°C 且電流為 10mA 時,LS33600 電壓會降至 3V。利用公式 3 計算可用能量為:
E = 12 × 1.65 × 32 - 12 × 1.65 × 2.62=1.848 J (3)
對公式 2 和 3 的結(jié)果進(jìn)行比較,可發(fā)現(xiàn) TPS61094 解決方案的可用能量是 HLC 和 EDLC 解決方案的兩倍。這意味著有更多的能量被輸送到負(fù)載,并且在極端情況下,電池的峰值電流會降低。例如,如果在 3.3V 的電壓下使用 200mA 負(fù)載來驅(qū)動閥門,HLC 或 EDLC 解決方案僅能在 2.8s 時間內(nèi)支持負(fù)載。具有集成式超級電容器的 TPS61094 降壓/升壓轉(zhuǎn)換器可在長達(dá) 7.8s 的時間內(nèi)支持負(fù)載(假設(shè)由電源緩沖器為所有負(fù)載供電)。
結(jié)語
流量計具有復(fù)雜的負(fù)載消耗曲線,因此需要使用電源緩沖器,以幫助延長 LiSOCl2 電池的壽命。TPS61094 可在寬工作范圍內(nèi)實現(xiàn)出色效率,是解決電池壽命難題的理想之選。通過限制電池的峰值電流,這款降壓/升壓轉(zhuǎn)換器可更大程度提升容量以及超級電容器的可用能量,與 HLC 或 EDLC 解決方案相比,可使系統(tǒng)在低溫條件下工作更長時間。
評論
查看更多