?
自然能電源廣義上可劃分為直流 (DC) 電源和交流 (AC) 電源。DC 電源包括采集自各種能源的采集能量,它們隨光照強度和熱梯度變化較慢,使用太陽能電池板和熱電發(fā)電機。這些采集器的輸出電壓不必經(jīng)過整流。AC 集成器包括使用壓電材料、電磁發(fā)電機和整流天線,采集自振動和射頻功率的能量。在用于為某個系統(tǒng)供電以前,必須對這些能源采集器的輸出整流至某個 DC 電壓。本文中,只有 DC 能源采集器被看作是利用這些能源的能量采集器,相比 AC 采集器,它更容易獲得高輸出。
?
圖 1 一般能源采集系統(tǒng)結(jié)構(gòu)圖
?
圖 1 顯示了能源采集系統(tǒng)的一般架構(gòu)。該總系統(tǒng)由自然能電源、能量緩沖器(超級電容器/電池)、電源管理集成電路 (PMIC) 和系統(tǒng)負載組成。由于能源可用能量取決于隨時間變化的環(huán)境條件,因此獲取能源能量后存儲于能量緩沖器。系統(tǒng)負載通過能量緩沖器供電驅(qū)動。這樣做可讓系統(tǒng)在沒有可用自然能的情況下仍然能夠正常工作。電源管理單元由一個 DC/DC 功率轉(zhuǎn)換器(能源采集器接口經(jīng)過優(yōu)化)、電池管理電路、輸出穩(wěn)壓器和冷啟動單元組成。接下來,我們將逐一討論這些模塊的功能和設(shè)計考慮因素。
?
充電器
充電器的功能是從太陽能電池板或者 TEG 獲取最大有效能量,然后將其傳輸至存儲組件。充電器的主要考慮因素包括拓撲結(jié)構(gòu)、效率、最大功率提取網(wǎng)絡和復雜度。常見充電器拓撲包括線性壓降 (LDO) 穩(wěn)壓器、降壓轉(zhuǎn)換器、增壓轉(zhuǎn)換器和升降壓轉(zhuǎn)換器。
?
使用太陽能電池板時,拓撲結(jié)構(gòu)主要取決于太陽能電池板堆棧的輸出電壓。一般而言,單節(jié)電池太陽能板的輸出為 0.5V。因此,對于單節(jié)電池和兩節(jié)電池太陽能板的系統(tǒng)來說,要求使用一個增壓轉(zhuǎn)換器拓撲,因為鎳氫電池和鋰離子電池的電池電壓一般大于 1.2V 和 3V。更多串聯(lián)電池時,可以使用如二極管整流器、降壓穩(wěn)壓器或者LDO等其它轉(zhuǎn)換器。就熱電發(fā)電機而言,輸出電壓范圍為 10mV 到 500 mV。因此,使用熱電發(fā)電機 (TEG) 時,我們主要選擇增壓轉(zhuǎn)換器。串聯(lián)堆疊許多TEG來獲得更高的電壓是可能的,這樣便可以使用 LDO 或者降壓穩(wěn)壓器。這種方案的缺點是存在較大的 TEG 堆棧串聯(lián)阻抗。
?
?
圖 2 (a-b)、太陽能電池板和熱電發(fā)電機模型
?
為了從太陽能電池板或者熱電發(fā)電機獲取最大功率,電池板或者 TEG 必須工作在其最大功率點。要理解能源采集器需在其最大功率點下工作的原因,請分別參見圖 2a 和圖 2b 所示太陽能電池板和 TEG 模型??蓪⑻柲茈姵匕褰橐粋€反向偏置二極管,其提供寄生電容 (CHRV) 并聯(lián)電流。二極管的電流輸出與光照強度成比例關(guān)系。熱電發(fā)電機模型由一個與電阻器串聯(lián)的電壓源組成。電阻器模型和 TEG 內(nèi)部阻抗取決于材料屬性和 TEG 的體積。使用典型太陽能電池板和 TEG 時,圖 3 和圖 4 分別顯示了電流對電壓和功率對電壓情況。您可以看到,就太陽能電池板而言,在約 80% 開路電壓 (OCV) 時得到最大功率。類似地,就 TEG 而言,在50% OCV 時獲得最大功率點。
?
根據(jù)圖 3 所示曲線圖,可以很清楚地知道,需要一個接口電路來獲得最大有效功率。最大功率提取電路動態(tài)地調(diào)節(jié)功率轉(zhuǎn)換器的輸入阻抗,以獲得最大功率。在進行太陽能采集時,利用開路電壓固定部分輸入電壓調(diào)節(jié)、短路電流固定部分輸入電流調(diào)節(jié)等簡單技術(shù),或者使用一些基于微處理器的復雜技術(shù),可以實現(xiàn)最大功率提取。
圖 3 太陽能電池板的電壓與電流以及電壓與功率曲線圖
?
圖 4 熱電發(fā)電機的電壓與電流以及電壓與功率曲線圖
?
從 TEG 提取最大功率的一些技術(shù)包括動態(tài)改變 DC/DC 轉(zhuǎn)換器開關(guān)頻率,然后在 50% 開路電壓對 DC/DC 轉(zhuǎn)換器輸入電壓進行調(diào)節(jié)。在所有這些轉(zhuǎn)換器中,輸出電壓都由能量緩沖器決定。
?
請注意,轉(zhuǎn)換器拓撲結(jié)構(gòu)的選擇,是在設(shè)計復雜度、組件數(shù)目和效率之間進行權(quán)衡的一個過程。開關(guān)式轉(zhuǎn)換器一般擁有比線性穩(wěn)壓器更好的效率,但代價是組件數(shù)目更多、設(shè)計更復雜且占用電路板空間更大。
?
電池管理電路
在能源采集系統(tǒng)中,能量緩沖器用于存儲來自能源采集器的有效間歇性能量。之后,使用所存儲的能量為系統(tǒng)供電。即使可用能源存在不連續(xù)的情況下,這種架構(gòu)也可讓總系統(tǒng)持續(xù)工作。常用能量緩沖器包括各種化學物質(zhì)的可重復充電電池和超級電容器。電池管理電路有兩個主要功能。首先,它對能量緩沖器的電壓進行監(jiān)控,確保該電壓在由欠電壓 (UV) 和過電壓 (OV) 閾值確定的安全工作區(qū)域內(nèi)。其次,它對能量緩沖器的容量進行監(jiān)控,并為有效工作所需能量可用情況相關(guān)的負載提供指示。利用一些簡單的技術(shù),例如:能量緩沖器電壓監(jiān)控或者使用電量計方法,對電池的輸入、輸出電壓和電流進行測量,便可完成對電量的測量。當使用簡單的電壓型方法指示能量緩沖器剩余電量時,我們可以實現(xiàn)一種被稱作電力良好水平的用戶可編程中間電壓電平。
?
電池管理部分的設(shè)計考慮因素取決于所使用的能量緩沖器。使用可重復充電電池時,OV 和 UV 閾值基于電池的化學物質(zhì)組成。使用超級電容器時,OV 和 UV 閾值由 IC 和電容器的絕對最大額定值的下限決定。使用能量緩沖器的最佳設(shè)置,可以最大化系統(tǒng)的壽命。電池管理部分的另一個設(shè)計考慮因素是電池管理部分消耗的靜態(tài)電流。電池管理模塊電路包括基準、比較器和數(shù)字邏輯等基礎(chǔ)模塊。必需最小化這些電路消耗的電流。這是因為,電池管理部分使用的任何能量都會使電池漏電,并且這種能量并未提供給外部負載。
?
冷啟動
冷啟動單元是一種備選模塊,在典型能源采集 PMIC 中可有可無。冷啟動單元的功能是在存儲組件中所儲能量不足時幫助系統(tǒng)啟動。具體冷啟動單元設(shè)計取決于不同的應用。就太陽能應用而言,我們可以使用一個輸入驅(qū)動型(相對于電池供電型)振蕩器來驅(qū)動暫時低效的開關(guān)式轉(zhuǎn)換器的開關(guān)[1]。一旦能量緩沖器中形成足夠的能量,高效開關(guān)式轉(zhuǎn)換器便可接管。就熱電發(fā)電機而言,可使用變壓器耦合振蕩器拓撲或者利用系統(tǒng)的機械運動,來實現(xiàn)冷啟動單元[2,3]。這種模塊的設(shè)計考慮因素為最小啟動電壓、啟動功率、峰值浪涌電流和啟動所需時間。
?
穩(wěn)壓器
穩(wěn)壓器的功能是對電池電壓進行調(diào)節(jié),以提供穩(wěn)定的電壓。這種模塊的拓撲取決于電池、系統(tǒng)負載要求和靜態(tài)電流。
?
總結(jié)
本文中,我們討論了適用于 DC 能源采集應用的電源管理 IC 設(shè)計或者選擇過程中需要考慮的一些重要因素,包括每個 IC 基礎(chǔ)模塊的設(shè)計考慮因素等。能源采集 PMIC 可以把某些或者所有功能都集成在單塊 IC 上。PMIC 選擇取決于能源采集源、能量緩沖器和系統(tǒng)負載。
評論
查看更多