返馳式(flyback)拓樸是最常見的隔離式電源拓樸結(jié)構(gòu),因為它可以用一個低邊開關(guān)電晶體和有限的外部元件數(shù)提供多個隔離輸出。不過,返馳式電源也存在一些特殊性,如果設(shè)計人員沒有充分理解并對其進(jìn)行分析,就可能限制它的整體表現(xiàn)。
針對這種拓樸結(jié)構(gòu),本文將以非常簡單的數(shù)學(xué)方法揭開所有返馳式電源設(shè)計神秘面紗,指導(dǎo)設(shè)計人員完成一個最佳化的設(shè)計。
返馳式轉(zhuǎn)換器
根據(jù)應(yīng)用的不同,直流-直流應(yīng)用(DC/DC應(yīng)用)可能需要多個輸出,而且需要輸出隔離。此外,輸入與輸出的隔離可能必須符合安全標(biāo)準(zhǔn)或提供阻抗匹配。
隔離式電源不僅能防止用戶接觸到潛在的致命電壓和電流,而且還有性能方面的優(yōu)勢。利用中斷接地迴路,隔離式電源可以保持儀器精密度,并能在不犧牲匯流排優(yōu)點的條件下順利地透過負(fù)電源匯流排提供正穩(wěn)壓電壓。
對設(shè)計人員來說,返馳式拓樸結(jié)構(gòu)歷來是輸出功率100W以下的電源隔離式轉(zhuǎn)換器的首選。這種拓樸結(jié)構(gòu)只需要一個磁性元件和一個輸出整流管,因而具有簡單和低成本的優(yōu)勢,同時它也可以輕鬆實現(xiàn)多工輸出。
但返馳式拓樸結(jié)構(gòu)的缺點是需要一個高容值的輸出電容器,功率開關(guān)管和輸出二極體的電流應(yīng)力較高,氣隙區(qū)渦流損耗較高,變壓器鐵芯較大以及可能存在的EMI問題。
返馳式轉(zhuǎn)換器源于降壓-升壓拓樸結(jié)構(gòu),其主要缺點是只在開關(guān)MOSFET導(dǎo)通時間內(nèi)才從源極收集能量。在后來的切斷期間,來自一次側(cè)繞組的這種能量從電感傳遞到輸出端。這是返馳式和降壓-升壓拓樸結(jié)構(gòu)的特點。(圖1)
圖1:執(zhí)行在連續(xù)導(dǎo)通模式下的典型返馳式電源。
一次側(cè)電流和二次側(cè)電流同時流過時,返馳式變壓器并不像傳統(tǒng)變壓器那樣正常工作,實際上只有一小部份能量(磁化能量)被儲存在變壓器中。返馳式變壓器更像是同一鐵芯上的多個電感器,而非一個典型的變壓器。理想的情況是,變壓器并不儲存能量,所有的能量都在瞬間從一次側(cè)轉(zhuǎn)移到二次側(cè)。
返馳式變壓器可作為儲能裝置,能量儲存在鐵芯的氣隙或坡莫合金粉芯的分佈式氣隙當(dāng)中。
電感變壓器的設(shè)計應(yīng)盡量減少漏電感、交流繞組損耗和磁芯損耗。
漏電感(Leakage inductance)是一次側(cè)電感的一部份,未與二次側(cè)電感相互耦合。保持盡可能低的漏電感十分重要,因為它會降低變壓器的效率,還會導(dǎo)致開關(guān)元件的漏極出現(xiàn)尖峰。漏電感可被看作為儲存在變壓器中的部份能量,它不會轉(zhuǎn)移到二次側(cè)和負(fù)載。這種能量需要通過一個外部緩衝器在一次側(cè)耗散掉。緩衝器的配置將在后面予以討論。
當(dāng)MOSFET開啟且電壓施加在一次側(cè)繞組時,一次側(cè)電流線性上升。輸入電流的變化是由輸入電壓、變壓器一次側(cè)電感和導(dǎo)通時間決定的。在這段時間內(nèi),能量被儲存在變壓器鐵芯中,輸出二極體D1被反向偏置,能量不會轉(zhuǎn)移到輸出負(fù)載。當(dāng)MOSFET關(guān)閉時,磁場開始下降,顛倒了一次側(cè)和二次側(cè)繞組之間的極性。D1被正向偏置,能量轉(zhuǎn)移到負(fù)載。
斷續(xù)傳導(dǎo)模式與連續(xù)傳導(dǎo)模式:
返馳式轉(zhuǎn)換器像任何其他的拓樸結(jié)構(gòu)一樣有兩種不同的工作模式──斷續(xù)導(dǎo)通模式(DCM)和連續(xù)導(dǎo)通模式(CCM)。當(dāng)輸出電流的增加超過一定值時,斷續(xù)模式設(shè)計電路將轉(zhuǎn)為連續(xù)模式。在斷續(xù)模式時,導(dǎo)通時間內(nèi)儲存在一次側(cè)的所有能量都會于下一週期開始之前完全轉(zhuǎn)移到二次側(cè)和負(fù)載;而且,在二次電流達(dá)到零值和下一個週期開始間的瞬間還會有死區(qū)時間。在連續(xù)模式下,當(dāng)下一個週期開始時,仍會有一些能量留在二次側(cè)。返馳式轉(zhuǎn)換器可以在兩種模式下執(zhí)行,但它具有不同的特徵。
斷續(xù)導(dǎo)通模式 一方面具有較高的峰值電流,因此在切斷時有較高的輸出電壓尖峰。另一方面,它具有更快的負(fù)載瞬態(tài)響應(yīng),一次側(cè)電感較低,因此變壓器尺寸可以較小。二極體的反向恢復(fù)時間并不重要,因為在反向電壓施加之前正向電流為零。在斷續(xù)導(dǎo)通模式下,電晶體的開啟隨零集電極電流出現(xiàn),降低了傳導(dǎo)EMI的噪音。
連續(xù)導(dǎo)通模式 具有較低的峰值電流,并因此降低了輸出電壓尖峰。但由于它的右半平面(RHP)零點迫使轉(zhuǎn)換器的總頻寬降低,所以其控制迴路比較復(fù)雜。由于連續(xù)導(dǎo)通模式對大多數(shù)應(yīng)用而言是更加的選擇,因此以上僅對該模式進(jìn)行了更多的細(xì)節(jié)分析。
確定返馳式變壓器:繞組匝數(shù)比及其電感
設(shè)計人員不得不處理的第一個難題就是確定返馳式變壓器。通常他們可以從返馳式電源變壓器標(biāo)準(zhǔn)目錄中進(jìn)行選擇,而無需更昂貴的定製變壓器。許多供應(yīng)商都可以針對不同應(yīng)用和功率大小提供完整系列的變壓器,但重要的是要了解如何選擇最合適的變壓器。除了二次側(cè)繞組的功率大小和匝數(shù),變壓器還可根據(jù)一次側(cè)/二次側(cè)繞組匝數(shù)比,以及一次側(cè)或二次側(cè)電感來分類。
如果忽略開關(guān)MOSFET和輸出整流二極體兩端壓降的影響,在穩(wěn)態(tài)執(zhí)行條件下,導(dǎo)通時間()的電壓*秒應(yīng)該等于切斷期間()電壓*秒:
?。?)
公式中:
是輸入電壓
是輸出電壓
是返馳式變壓器的一次側(cè)匝數(shù)/二次側(cè)匝數(shù)匝比
那么,最大佔空比的數(shù)匝比和最小輸入輸出電壓之間的直接關(guān)係是:
?。?)
其中D為佔空比:/開關(guān)週期。
在許多情況下,選定的最大佔空比為50%,但是在寬輸入電壓範(fàn)圍的應(yīng)用中,重要的是要了解如何最佳化以下關(guān)係:最大佔空比、變壓器匝比、峰值電流和額定電壓。
返馳式拓樸結(jié)構(gòu)的主要優(yōu)點之一是可以在佔空比大于50%的條件下工作。最大佔空比的增加降低了變壓器一次側(cè)的峰值電流,因而達(dá)到一次側(cè)銅變壓器更高利用係數(shù)的效果,并降低輸入源的紋波。同時,最大佔空比的提高可增加主開關(guān)MOSFET漏源極之間的最大應(yīng)力電壓,并增加二次側(cè)的峰值電流。
在開始設(shè)計轉(zhuǎn)換器之前,重要的是要了解最大佔空比、變壓器一次側(cè)/二次側(cè)匝數(shù)比(Np/Ns)、一次側(cè)MOSFET的最大電壓應(yīng)力、一次側(cè)和二次側(cè)最大電流之間的關(guān)係。
公式(2)顯示輸出電壓Vo和輸入電壓Vi(因為其簡單性沒有考慮Q1和二次側(cè)整流管Q2兩端的壓降)之間的主要關(guān)係。為了確保在整個輸入電壓範(fàn)圍Vo的穩(wěn)壓,最大佔空比可以任意選定一個《1的理論值。
然后可以計算Np/Ns:
(3)
此處表示主MOSFET的漏源極之間的最大電壓,可由公式(4)及公式(5)和(6)得知,分別表示了變壓器一次側(cè)和二次側(cè)的平均電流。
公式中:
是二次側(cè)整流二極體的正向壓降
是傳導(dǎo)期間開關(guān)MOSFET的壓降
是整體電源效率
是最大輸出電流
透過最大化佔空比的利用係數(shù)U(D)函數(shù)可以得到最佳佔空比:
利用係數(shù)(Ui)是用輸出功率除以二次側(cè)開關(guān)MOSFET和整流二極體的總最大應(yīng)力之和得出的。
圖2:典型返馳式轉(zhuǎn)換器的利用係數(shù)與佔空比的關(guān)係,最大化利用係數(shù)的佔空比為30-40%。
圖中的兩條曲線顯示只考慮開關(guān)MOSFET應(yīng)力(藍(lán)色虛線)計算出來的利用係數(shù),以及考慮二次側(cè)開關(guān)MOSFET和整流二極體(紅色虛線)的利用係數(shù)。
如果要最佳化額定輸入電壓的電源效率,一次側(cè)/二次側(cè)變壓器匝數(shù)比就得利用佔空比來計算,以使利用係數(shù)最大化,其典型值在30-40%之間。
上面的曲線考慮的是主動元件上的理論應(yīng)力電壓。在實際進(jìn)行時,更重要的是評估MOSFET最大應(yīng)力電壓和變壓器數(shù)匝數(shù)比如何隨所選擇的最大佔空比而變化,并選擇一個可在開關(guān)MOSFET的一定最大擊穿電壓內(nèi)給出‘圓形’(round)匝數(shù)比值。
確定一次側(cè)電感
選擇一次側(cè)和二次側(cè)電感有幾個標(biāo)準(zhǔn)。
第一,選擇可確保從滿載到某些最小負(fù)載均在連續(xù)模式執(zhí)行的一次側(cè)電感。
第二,透過確定最大二次側(cè)紋波電流來運算一次側(cè)和二次側(cè)電感。
第叁,運算一次側(cè)電感,以保持盡可能高的右半平面零點(RHP),因而大幅地提高閉環(huán)穿越頻率。
實際上,第一個標(biāo)準(zhǔn)只用于特殊情況,而選擇的磁化電感可作為變壓器尺寸、峰值電流和RHP零點之間的最佳折衷。
為了確定二次側(cè)最大紋波電流來計算一次側(cè)和二次側(cè)電感,可用以下公式計算出二次側(cè)電感()和一次側(cè)電感():
?。?)
公式中是開關(guān)頻率,是允許的二次側(cè)紋波電流,通常設(shè)置在約為輸出電流有效值的30-50%:
?。?)
那么,等效一次側(cè)電感可從以下公式獲得:
(10)
如前所述,一次側(cè)電感和佔空比會影響右半平面零點(RHP)。RHP增加了閉環(huán)控制特性的相位滯后,迫使最大穿越頻率不超過RHP頻率的1/4。
RHP是佔空比、負(fù)載和電感的函數(shù),可引發(fā)和增加迴路增益,同時降低迴路相位裕度。通常的做法是確定最差情況的RHPZ頻率,并設(shè)置迴路單位增益頻率低于RHPZ的叁分之一。
在返馳式拓樸結(jié)構(gòu)中,運算RHPZ的公式是:
?。?1)
可以選擇一次側(cè)電感來削弱這種不良效果。
圖3的曲線顯示一次側(cè)電感對一次側(cè)和二次側(cè)電流和RHP零點的影響:隨著電感的增加紋波電流會減少,因此輸入/輸出紋波電壓和電容器大小也可能減少。但增加的電感增加了變壓器一次側(cè)二次側(cè)繞組數(shù),同時減少了RHP零點。
圖3:典型返馳式設(shè)計一次側(cè)、二次側(cè)紋波電流、RHP零點與一次側(cè)電感的關(guān)係。
一般建議不應(yīng)使用過大的電感,以免影響整個系統(tǒng)的整體閉環(huán)性能和尺寸,以及返馳式變壓器的損耗。上述圖形和公式只在連續(xù)導(dǎo)通模式下的返馳式執(zhí)行才有效。
選擇功率開關(guān)MOSFET并計算其損耗
MOSFET的選擇基于最大應(yīng)力電壓、最大峰值輸入電流、總功率損耗、最大允許工作溫度,以及驅(qū)動器的電流驅(qū)動能力。MOSFET的源汲擊穿(Vds)必須大于:
?。?2)
MOSFET的連續(xù)漏電流(Id)必須大于一次側(cè)峰值電流(公式15)。
除了最大額定電壓和最大額定電流,MOSFET的其他叁個重要參數(shù)是Rds(on)、閘極閾值電壓和閘極電容器。
開關(guān)MOSFET的損耗有叁種類型,即導(dǎo)通損耗、開關(guān)損耗和閘極電荷損耗:
導(dǎo)通損耗等于損耗,因此在導(dǎo)通狀態(tài)下源極和汲極之間的總電阻要盡可能最低。
開關(guān)損耗等于:開關(guān)時間*Vds*I*頻率。開關(guān)時間、上升時間和下降時間是MOSFET閘汲極米勒電荷Qgd、驅(qū)動器內(nèi)部電阻和閾值電壓的函數(shù),最小閘極電壓Vgs(th)有助于電流通過MOSFET的漏源極。
閘極電荷損耗是由閘極電容器充電,以及隨后的每個週期對地放電引起的。閘極電荷損耗等于:頻率* Qg(tot)* Vdr
不幸的是,電阻最低的元件往往有較高的閘極電容器。
開關(guān)損耗也會受閘極電容器的影響。如果閘極驅(qū)動器對大容量電容器充電,則MOSFET需要時間進(jìn)行線性區(qū)提升,則損耗增加。上升時間越快,開關(guān)損耗越低。不幸的是,這將導(dǎo)致高頻噪音。
導(dǎo)通損耗不取決于頻率,它還取決于和一次側(cè)RMS電流的平方:
?。?3)
在連續(xù)導(dǎo)通模式下,返馳式執(zhí)行的一次側(cè)電流看來像圖4上部所示的梯形波形。
Ib等于一次側(cè)峰值電流:
Ia是從以上的公式(5)得出的平均電流,減去一半ΔIp電流為:
?。?6)
那么開關(guān)管的RMS電流可從下式得到:
(17)
或其迅速接近:
?。?8)
開關(guān)損耗()取決于轉(zhuǎn)換期間的電壓和電流、開關(guān)頻率和開關(guān)時間,如圖4所示。
圖4:換向期間MOSFET兩端的電流和電壓波形。
在導(dǎo)通期間,MOSFET兩端的電壓為輸入電壓加反映在一次側(cè)的輸出電壓,電流等于平均中間最高電流減去一半ΔIp:
(19)
?。?0)
在關(guān)閉過程中,MOSFET兩端的電壓為輸入電壓加反映在一次側(cè)繞組的輸出電壓,再加上用于箝位的齊納箝位電壓和吸收漏電感。開關(guān)管切斷電流為一次側(cè)峰值電流。
(21)
開關(guān)時間取決于最大閘極驅(qū)動電流和MOSFET的總閘極電荷,MOSFET寄生電容器是調(diào)節(jié)MOSFET開關(guān)時間的最重要的參數(shù)。電容器Cgs和Cgd取決于元件的幾何尺寸并與源極電壓成反比。
通常MOSFET製造商沒有直接提供這些電容器值,但是可以從Ciss、Coss和Crss值獲得。
導(dǎo)通開關(guān)時間可以使用下列公式用閘極電荷來估計:
(22)
?。?3)
公式中:
Qgd是閘漏極電荷
Qgs是閘源極電荷
是當(dāng)驅(qū)動電壓被拉升至驅(qū)動電壓時的導(dǎo)通時間驅(qū)動電阻
是當(dāng)驅(qū)動電壓被下拉至接地電壓時的內(nèi)部驅(qū)動電阻
是閘源極閾值電壓(MOSFET開始導(dǎo)通的閘極電壓)
緩衝器:
漏電感可以被看作是與變壓器的一次側(cè)電感串聯(lián)的寄生電感,其一次側(cè)電感的一部份沒有與二次側(cè)電感相互耦合。當(dāng)開關(guān)MOSFET關(guān)閉時,儲存在一次側(cè)電感中的能量透過正向偏置二極體流動到二次側(cè)和負(fù)載。儲存在漏電感中的能量則變成了開關(guān)接腳(MOSFET汲極)上巨大的電壓尖峰。漏電感可以透過短路二次側(cè)繞組來進(jìn)行測量,而一次側(cè)電感的測量通常由變壓器製造商給出。
耗散漏電感能量的一種常用方法是透過一個與一次側(cè)繞組并聯(lián)的齊納二極體來阻斷與之串聯(lián)的二極體實現(xiàn)的,如圖5所示。
?。▓D5:齊納箝位電路)
漏電感能量必須透過一個外部箝位緩衝器來耗散:
?。?4)
齊納電壓應(yīng)低于開關(guān)MOSFET的最大漏源電壓減去最大輸入電壓,但要高到足以在很短的時間內(nèi)耗散這一能量才可以。
齊納二極體的最大功率損耗為:
?。?5)
返馳式設(shè)計資源:
為了支援返馳式設(shè)計,德州儀器公司開發(fā)特別適合返馳式應(yīng)用的一系列PWM穩(wěn)壓器和控制器。圖6顯示一個採用LM5000穩(wěn)壓器的典型5W返馳式電源,它是用WEBENCH進(jìn)行模擬的,其輸入電壓變化範(fàn)圍從10至35V,1A時的輸出電壓等于5V。該設(shè)計遵循上述過程,Coilcraft變壓器的一次側(cè)與二次側(cè)匝數(shù)比等于3,一次側(cè)電感為80μH,可確保良好的穩(wěn)壓輸出電壓,將一次側(cè)峰值電流大幅地降至1.3A以下,也使內(nèi)部開關(guān)MOSFET兩端的最大電壓低于60V。80μF的一次側(cè)電感確保了二次側(cè)紋波電流峰-峰值在平均電流的30%以內(nèi),同時保持20kHz以上的右半平面零點。
圖6:採用WEBENCH線上模擬工具的典型5W返馳式設(shè)計
WEBENCH是德州儀器公司的網(wǎng)上設(shè)計工具,用四個簡單步驟即可完成實現(xiàn)一個完整的開關(guān)電源設(shè)計。圖7和圖8顯示了用WEBENCH設(shè)計獲得的波德圖(Bode plot)和開關(guān)波形。
?。▓D7-8:輸出電壓和開關(guān)接腳的波德圖和開關(guān)波形)
評論
查看更多