?
參閱相關(guān)系列文章
電源設(shè)計(jì)關(guān)鍵之拓?fù)浣Y(jié)構(gòu)(一)
一、交錯(cuò)式DC/DC轉(zhuǎn)換器拓?fù)涓倪M(jìn)方案
與傳統(tǒng)的并聯(lián)輸出級(jí)晶體管相比,交錯(cuò)式DC/DC轉(zhuǎn)換器拓?fù)浣Y(jié)構(gòu)能夠?qū)崿F(xiàn)更高效率的設(shè)計(jì),且仍然有改進(jìn)的余地。在交錯(cuò)式操作中,許多微型轉(zhuǎn)換器單元(或相位)并聯(lián)放置。理想情況下,有源相移控制電路將功率均勻分配于各相,而且這種方法能夠消除輸出端的電流紋波,并提高有效紋波頻率,從而降低對(duì)輸出濾波器電容的要求。交錯(cuò)方法還能顯著降低對(duì)輸入電感和電容的要求。
然而,這種方法有幾個(gè)缺點(diǎn)。缺點(diǎn)之一是需要權(quán)衡轉(zhuǎn)換器的滿載效率與輕載效率。在晶體管級(jí)并聯(lián)的情況下,導(dǎo)通損耗減小,但開關(guān)損耗增大。滿載時(shí)以導(dǎo)通損耗為主,不存在問(wèn)題。但輕載時(shí)相反,開關(guān)損耗處于支配地位。此外,各相之間的均流也是一個(gè)麻煩的問(wèn)題,一般由有源控制電路來(lái)處理此問(wèn)題(如果沒(méi)有該電路,并聯(lián)各相之間的微小器件不匹配就會(huì)造成巨大的相位電流不平衡),有些方法優(yōu)于其它方法。
?
圖1:雙相交錯(cuò)式雙開關(guān)正向轉(zhuǎn)換器
數(shù)字電源管理能夠執(zhí)行復(fù)雜的控制算法,并具有數(shù)據(jù)總線能力,因而能夠更有力地解決這些問(wèn)題。下面我們將把該技術(shù)應(yīng)用于一個(gè)雙相交錯(cuò)式雙開關(guān)正向轉(zhuǎn)換器,以實(shí)現(xiàn)實(shí)時(shí)優(yōu)化。
提高效率
A. 輕載與重載
開關(guān)電源轉(zhuǎn)換器的總能量損耗等于導(dǎo)通損耗Pcond與開關(guān)損耗Psw之和。給定輸出電流Iout和開關(guān)頻率fs,開關(guān)損耗為(公式1):
Psw = Psw1 + Psw2 = ksw1 ? Iout ? fs + ksw2 ? fs
其中,ksw1和ksw2是與器件相關(guān)的開關(guān)損耗系數(shù)。一般說(shuō)來(lái),晶體管尺寸越大,則ksw1和ksw2越高。
不考慮電感電流紋波,路徑電阻Rpath上的導(dǎo)通損耗為(公式2):
Pcond = Iout2 ? Rpath
并聯(lián)使用交錯(cuò)相位可以降低路徑電阻,從而提高重載效率。然而,輕載時(shí)的功率損耗以開關(guān)損耗為主。ksw1和ksw2隨著相位增多而提高,交錯(cuò)操作會(huì)顯著降低輕載效率。因此,與單相轉(zhuǎn)換器相比,交錯(cuò)式多相轉(zhuǎn)換器具有更高的重載效率,但輕載效率則較低。轉(zhuǎn)換器的效率為(公式3):
?
對(duì)于單相轉(zhuǎn)換器,空載時(shí)的電源轉(zhuǎn)換效率為0,因?yàn)殚_關(guān)損耗部分Psw2始終存在。當(dāng)輸出電流增大時(shí),Psw2變得微不足道,因而效率隨之提高。公式3中的分母是一個(gè)二階多項(xiàng)式,而分子僅有一階,因此當(dāng)輸出電流經(jīng)過(guò)最優(yōu)點(diǎn)后,效率又開始下降。對(duì)于雙相轉(zhuǎn)換器,效率最優(yōu)點(diǎn)時(shí)的輸出電流為單相轉(zhuǎn)換器的兩倍。因此,相位越多,重載效率越高,但輕載效率則越低。
以前認(rèn)為,只有滿載效率才是重要的。但如今,電源轉(zhuǎn)換器更多時(shí)候是為輕載供電,而不是為重載供電。隨著節(jié)能需求日益高漲,較高的輕載效率對(duì)于電源至關(guān)重要。因此,設(shè)計(jì)師希望利用智能交錯(cuò)控制器來(lái)實(shí)現(xiàn)所有負(fù)載下的高效率運(yùn)作。
B. 通過(guò)控制相數(shù)實(shí)時(shí)優(yōu)化效率
以上的功率損耗分析顯示,讓兩個(gè)并聯(lián)相位同時(shí)在輕載下工作是不合適的。如果關(guān)閉一個(gè)相位,情況將大為改觀。導(dǎo)通損耗增大,但開關(guān)損耗減小,因此輕載效率更高。關(guān)鍵是要確保實(shí)時(shí)優(yōu)化相數(shù)。
圖2所示為一個(gè)雙相交錯(cuò)式雙開關(guān)正向轉(zhuǎn)換器的實(shí)驗(yàn)波形,本例采用ADI公司的數(shù)字控制器ADP1043實(shí)施控制。當(dāng)總負(fù)載電流降至某一閾值以下時(shí),第二相位禁用。如圖3所示,當(dāng)一個(gè)相位關(guān)斷時(shí),輕載效率得到提高。實(shí)施和不實(shí)施相位優(yōu)化控制的輕載效率差可能高達(dá)15%。
?
圖2:利用ADP1043實(shí)現(xiàn)自動(dòng)相位關(guān)斷
?
圖3:高效率交錯(cuò)式雙開關(guān)正向轉(zhuǎn)換器
C. 通過(guò)DCM操作實(shí)時(shí)優(yōu)化效率
從圖3可以看出,對(duì)于極低的負(fù)載,即使以單相工作,效率也會(huì)大幅下降。原因之一是轉(zhuǎn)換器的副邊使用同步整流器(圖1),當(dāng)輸出電流水平低于電流紋波時(shí),反向電流就會(huì)流過(guò)輸出電感,這種循環(huán)電流會(huì)引起導(dǎo)通損耗。為了提高效率,一種解決方案是關(guān)斷所有副邊同步整流器,放任體二極管或并聯(lián)二極管(多數(shù)情況下是肖特基二極管)自由處理。當(dāng)負(fù)載足夠低時(shí),轉(zhuǎn)換器以斷續(xù)電流模式(DCM)工作,從而避免循環(huán)電流的問(wèn)題。
采用這種方案,轉(zhuǎn)換器效率比連續(xù)電流模式(CCM)高5%。此外,輕負(fù)載時(shí)關(guān)斷一相可以進(jìn)一步提高整個(gè)應(yīng)用負(fù)載范圍的效率。
D. 其它考慮除了采取上述措施來(lái)優(yōu)化實(shí)時(shí)效率以外,設(shè)計(jì)師還必須仔細(xì)考慮功率級(jí)和控制器的設(shè)計(jì)。功率級(jí)、檢測(cè)網(wǎng)絡(luò)和反饋控制電路存在固有的傳播延遲,因此在快速負(fù)載升壓瞬變過(guò)程中,系統(tǒng)必須保持第一相位的輸出電壓穩(wěn)定后,才能啟動(dòng)第二相位。而且,系統(tǒng)應(yīng)能短時(shí)間處理全功率。晶體管的選擇應(yīng)當(dāng)基于這種熱敏感條件。此外,磁學(xué)設(shè)計(jì)應(yīng)能避免系統(tǒng)在較高輸出電流下發(fā)生飽和。
至于控制器,反饋補(bǔ)償器需要根據(jù)不同的工作模式進(jìn)行調(diào)整,因?yàn)楣β始?jí)傳遞函數(shù)會(huì)隨著相數(shù)和CCM/DCM條件的不同而改變。這就需要控制器提供智能管理,傳統(tǒng)的控制器很難勝任。另外,數(shù)字電源管理控制器能夠自動(dòng)檢測(cè)負(fù)載條件,并且平穩(wěn)切換到合適的轉(zhuǎn)換器模式。
各相均流交錯(cuò)式操作本身并不能確保電流均勻分配。由于并聯(lián)各相共享同一電壓反饋,所以不存在因基準(zhǔn)電壓不匹配而導(dǎo)致的誤差。因此,負(fù)載不平衡與器件容差、驅(qū)動(dòng)不平衡和時(shí)序誤差有關(guān)。
電流不平衡會(huì)造成熱應(yīng)力和器件應(yīng)力。針對(duì)可能發(fā)生的過(guò)應(yīng)力狀況,晶體管和磁性器件必須采取保險(xiǎn)設(shè)計(jì)。此外,效率也會(huì)受影響。例如,如果交錯(cuò)式正向轉(zhuǎn)換器的總電流為30A,兩相分別提供10A和20A的電流,那么該因素所致的效率下降幅度接近1%。
有兩種控制方案可用來(lái)實(shí)現(xiàn)各相均流:內(nèi)環(huán)路均流和雙環(huán)路均流。內(nèi)環(huán)路均流本質(zhì)上是電流模式控制。電壓補(bǔ)償器的輸出用作均流總線,為所有相位提供輸出電流參考。在電壓環(huán)路內(nèi),均流環(huán)路設(shè)計(jì)不受電壓帶寬的限制,均流響應(yīng)甚至可以比電壓環(huán)路更快。然而,當(dāng)設(shè)計(jì)外電壓環(huán)路時(shí),必須考慮內(nèi)環(huán)路的影響。如果內(nèi)環(huán)路更快,外環(huán)路的電壓調(diào)節(jié)功能可能會(huì)被削弱。
在雙環(huán)路操作中,電壓調(diào)節(jié)環(huán)路和均流環(huán)路并聯(lián)。各相有一個(gè)專用均流補(bǔ)償器來(lái)確保其電流跟隨均流總線,它可以是并聯(lián)各相的平均電流或最高相位電流。各相的均流環(huán)路輸出與公共電壓補(bǔ)償器輸出相加,產(chǎn)生該相的占空比信號(hào)。這樣,均流控制器和電壓調(diào)節(jié)控制器均會(huì)影響占空比信號(hào)的產(chǎn)生。采用這種控制結(jié)構(gòu)時(shí),各環(huán)路可以靈活設(shè)計(jì),設(shè)計(jì)師不必過(guò)份擔(dān)心均流環(huán)路與電壓調(diào)節(jié)環(huán)路的相互影響。
無(wú)論采用何種均流方案,為了進(jìn)行有源控制,必須檢測(cè)各相的電流。傳統(tǒng)方法是各相均使用電流檢測(cè)方案。電流檢測(cè)一般用于保護(hù)目的,這種技術(shù)會(huì)增加交錯(cuò)式轉(zhuǎn)換器的成本。
為了利用一路輸入檢測(cè)兩相的電流,控制器必須分離各相的電流。在交錯(cuò)式正向操作中,主開關(guān)的占空比始終低于50%,以免變壓器飽和。在180度相移下,主開關(guān)電流檢測(cè)不會(huì)發(fā)生信號(hào)重疊。因此,通過(guò)數(shù)字控制可以對(duì)檢測(cè)信號(hào)進(jìn)行分配,使之與各相的占空比信號(hào)對(duì)齊。這樣,只使用一個(gè)電流檢測(cè)電路就能清楚地辨別各相的電流??刂破鞅O(jiān)控各相中流動(dòng)的電流,存儲(chǔ)此信息,并且補(bǔ)償驅(qū)動(dòng)信號(hào)以確保均流。
圖4所示為一個(gè)利用ADP1043控制器實(shí)施以上方案的交錯(cuò)式正向轉(zhuǎn)換器示例。顯而易見,因?yàn)檎伎毡鹊陀?0%,所以利用一個(gè)公共電流檢測(cè)點(diǎn),控制器就能確定各相的電流。如果不實(shí)施均流控制,第二相位的電流幾乎是第一相位的兩倍。啟用均流控制后,兩相之間的電流差大幅降低到5%。
?
圖4. 兩相均流控制的效果:(上圖)啟用均流控制;(下圖)禁用均流控制。
總而言之,交錯(cuò)式操作能夠提供單相設(shè)計(jì)所不具備的優(yōu)點(diǎn)。使用數(shù)字電源管理可以進(jìn)一步擴(kuò)大交錯(cuò)式操作的好處。數(shù)字控制還能實(shí)現(xiàn)簡(jiǎn)單的均流方案。
二、節(jié)能式電源拓?fù)湓斀?/strong>
世界各地有關(guān)降低電子系統(tǒng)能耗的各種倡議,正促使單相交流輸入電源設(shè)計(jì)人員采用更先進(jìn)的電源技術(shù)。為了獲得更高的功率級(jí),這些倡議要求效率達(dá)到87% 及以上。由于標(biāo)準(zhǔn)反激式 (flyback) 和雙開關(guān)正激式等傳統(tǒng)電源拓?fù)涠疾恢С诌@些高效率級(jí),所以正逐漸被軟開關(guān)諧振和準(zhǔn)諧振拓?fù)渌〈?/p>
圖1所示為采用三種不同拓?fù)?(準(zhǔn)諧振反激式拓?fù)?、LLC諧振拓?fù)浜褪褂密涢_關(guān)技術(shù)的非對(duì)稱半橋拓?fù)洌?的開關(guān)的電壓和電流波形。
圖1:準(zhǔn)諧振、LLC和非對(duì)稱半橋拓?fù)涞谋容^
輸出二極管電流降至零
當(dāng)初級(jí)端耦合回次級(jí)端時(shí)的斜坡變化
體二極管導(dǎo)通,直到MOSFET導(dǎo)通
這三種拓?fù)洳捎昧瞬煌募夹g(shù)來(lái)降低MOSFET的開通損耗,導(dǎo)通損耗的計(jì)算公式如下:
在這一公式中,ID 為剛導(dǎo)通后的漏電流, VDS 為開關(guān)上的電壓, COSSeff 為等效輸出電容值(包括雜散電容效應(yīng)),tON 為導(dǎo)通時(shí)間,fSW 為開關(guān)頻率。。
如圖1所示,準(zhǔn)諧振拓?fù)渲械?MOSFET 在剛導(dǎo)通時(shí)漏極電流為零,因?yàn)檫@種轉(zhuǎn)換器工作在不連續(xù)傳導(dǎo)模式下,故開關(guān)損耗由導(dǎo)通時(shí)的電壓和開關(guān)頻率決定。準(zhǔn)諧振轉(zhuǎn)換器在漏電壓最小時(shí)導(dǎo)通,從而降低開關(guān)損耗。這意味著開關(guān)頻率不恒定:在負(fù)載較輕時(shí),第一個(gè)最小漏電壓來(lái)得比較早。以往的設(shè)計(jì)總是在第一個(gè)最小值時(shí)導(dǎo)通,輕負(fù)載下的效率隨開關(guān)頻率的增加而降低,抵消了導(dǎo)通電壓較低的優(yōu)點(diǎn)。在飛兆半導(dǎo)體的e-Series? 準(zhǔn)諧振電源開關(guān)中,控制器只需等待最短時(shí)間 (從而設(shè)置頻率上限),然后在下一個(gè)最小值時(shí)導(dǎo)通 MOSFET。
其它拓?fù)涠疾捎昧汶妷洪_關(guān)技術(shù)。在這種情況下,上面公式里的電壓VDS將從一般約400V的總線電壓降至1V左右,這有效地消除了導(dǎo)通開關(guān)損耗。通過(guò)讓電流反向經(jīng)體二極管流過(guò)MOSFET,再導(dǎo)通MOSFET,可實(shí)現(xiàn)零電壓開關(guān)。二極管的壓降一般約為1V。
諧振轉(zhuǎn)換器通過(guò)產(chǎn)生滯后于電壓波形相位的正弦電流波形來(lái)實(shí)現(xiàn)零電壓開關(guān),而這需要在諧振網(wǎng)絡(luò)上加載方波電壓,該電壓的基頻分量促使正弦電流流動(dòng) (更高階分量一般可忽略)。通過(guò)諧振,電流滯后于電壓,從而實(shí)現(xiàn)零電壓開關(guān)。諧振網(wǎng)絡(luò)的輸出通過(guò)整流提供DC輸出電壓,最常見的諧振網(wǎng)絡(luò)由一個(gè)帶特殊磁化電感的變壓器、一個(gè)額外的電感和一個(gè)電容構(gòu)成,故名曰LLC。
非對(duì)稱半橋轉(zhuǎn)換器則是通過(guò)軟開關(guān)技術(shù)來(lái)實(shí)現(xiàn)零電壓開關(guān)。這里,橋產(chǎn)生的電壓為矩形波,占空比遠(yuǎn)低于50%。在把這個(gè)電壓加載到變壓器上之前,需要一個(gè)耦合電容來(lái)消除其中的DC分量,而該電容還作為額外的能量存儲(chǔ)單元。當(dāng)兩個(gè)MOSFET都被關(guān)斷時(shí),變壓器的漏電感中的能量促使半橋的電壓極性反轉(zhuǎn)。這種電壓擺幅最終被突然出現(xiàn)初級(jí)電流的相關(guān)MOSFET體二極管鉗制。
選擇標(biāo)準(zhǔn)
這些能源優(yōu)化方面的成果帶來(lái)了出色的效率。對(duì)于75W/24V的電源,準(zhǔn)諧振轉(zhuǎn)換器設(shè)計(jì)可以獲得超過(guò)88%的 效率。利用同步整流 (加上額外的模擬控制器和一個(gè)PFC前端),更有可能在90W/19V電源下把效率提高到90% 以上。在該功率級(jí),雖然LLC諧振和非對(duì)稱半橋轉(zhuǎn)換器可獲得更高的效率,但由于這兩種方案的實(shí)現(xiàn)成本較高,所以這個(gè)功率范圍普遍采用準(zhǔn)諧振轉(zhuǎn)換器。對(duì)于從1W輔助電源到30W機(jī)頂盒電源乃至50W的工業(yè)電源的應(yīng)用范圍,e-Series集成式電源開關(guān)系列都十分有效。在此功率級(jí)之上,建議使用帶外部MOSFET的FAN6300準(zhǔn)諧振控制器,它可以提供處理超高系統(tǒng)輸入電壓的額外靈活性,此外,由于外部MOSFET的選擇范圍廣泛而有助于優(yōu)化性價(jià)比。
準(zhǔn)諧振反激式拓?fù)涫褂靡粋€(gè)低端MOSFET;而另外兩種拓?fù)湓谝粋€(gè)半橋結(jié)構(gòu)中需要兩個(gè)MOSFET。因此,在功率級(jí)較低時(shí),準(zhǔn)諧振反激式是最具成本優(yōu)勢(shì)的拓?fù)?。在功率?jí)較高時(shí),變壓器的尺寸增加,效率和功率密度下降,這時(shí)往往考慮采用兩種零電壓開關(guān)拓?fù)洹?/p>
系統(tǒng)設(shè)計(jì)會(huì)受到四個(gè)因素所影響:分別是輸入電壓范圍、輸出電壓、是否易于實(shí)現(xiàn)同步整流,以及漏電感的實(shí)現(xiàn)。
圖2比較了兩種拓?fù)涞脑鲆媲€。為便于說(shuō)明,我們假設(shè)需要支持的輸入電壓為110V 和 220V。對(duì)于非對(duì)稱半橋拓?fù)?,這不是問(wèn)題。在我們?cè)O(shè)定的工作條件下,220V 和110V 時(shí)其增益分別為0.2和0.4 。在220V時(shí),效率較低,因?yàn)榇呕疍C電流隨占空比減小而增大。對(duì)于LLC諧振轉(zhuǎn)換器來(lái)說(shuō),最大增益為1.2,要注意的是滿負(fù)載曲線非常接近諧振。0.6的增益將導(dǎo)致頻率極高,系統(tǒng)性能很差??傃灾?,LLC 轉(zhuǎn)換器不適合于較寬的工作范圍。通過(guò)對(duì)漏電感進(jìn)行外部調(diào)節(jié),LLC 轉(zhuǎn)換器可以用于歐洲的輸入范圍,但代價(jià)是磁化電流較大;若采用了PFC前端,它的工作最佳。而非對(duì)稱半橋結(jié)構(gòu)在輸入端帶有PFC級(jí),因此電路可工作在很寬的輸入電壓范圍上。
圖2:非對(duì)稱半橋和LLC轉(zhuǎn)換器的增益曲線
對(duì)于24V以上的輸出電壓,我們建議采用LLC諧振轉(zhuǎn)換器。高的輸出二極管電壓會(huì)致使非對(duì)稱半橋轉(zhuǎn)換器效率降低,因?yàn)轭~定電壓較高的二極管,其正向壓降也較高。在24V以下,非對(duì)稱半橋轉(zhuǎn)換器則是很好的選擇。因?yàn)檫@時(shí)LLC轉(zhuǎn)換器的輸出電容紋波電流要大得多,其隨輸出電壓降低而變大,從而增加解決方案的成本和尺寸。
上述兩種拓?fù)涠伎梢圆捎猛秸?。?duì)非對(duì)稱半橋拓?fù)?,這實(shí)現(xiàn)起來(lái)非常簡(jiǎn)單 (參見飛兆半導(dǎo)體應(yīng)用說(shuō)明AN-4153)。對(duì)LLC控制器,需要一個(gè)特殊的模擬電路來(lái)檢測(cè)流入MOSFET的電流,如果開關(guān)頻率被限制為第二個(gè)諧振頻率 (圖2中的100kHz),該技術(shù)是比較簡(jiǎn)單的。
最后,兩種設(shè)計(jì)都依賴變壓器的漏電感:在LLC轉(zhuǎn)換器中用來(lái)控制增益曲線 (圖2);而在非對(duì)稱半橋轉(zhuǎn)換器則用以確保輕載下的軟開關(guān)。對(duì)于大多數(shù)應(yīng)用,我們都建議采用兩個(gè)單獨(dú)的電感來(lái)達(dá)到此目的。漏電感是變壓器中不容易控制的一個(gè)參數(shù)。此外,要實(shí)現(xiàn)一個(gè)不同尋常的漏電感,需要一個(gè)非標(biāo)準(zhǔn)的線圈管,這增加了成本。對(duì)于非對(duì)稱半橋結(jié)構(gòu),如果采用標(biāo)準(zhǔn)變壓器,諧振開關(guān)速度至少是開關(guān)頻率的10倍,從而產(chǎn)生更大的損耗??傊?,對(duì)LLC轉(zhuǎn)換器而言,建議再采用一個(gè)普通鐵氧體電感;而對(duì)非對(duì)稱半橋轉(zhuǎn)換器,建議只使用一個(gè)高頻鐵氧體電感。
圖3顯示了非對(duì)稱半橋轉(zhuǎn)換器的電路示意圖。該圖非常類似于LLC諧振轉(zhuǎn)換器,只有一點(diǎn)不同:LLC諧振轉(zhuǎn)換器不需要輸出電感,以及非對(duì)稱半橋控制器需要設(shè)置頻率而非PWM控制。
圖3:基于FSFA2100的非對(duì)稱半橋轉(zhuǎn)換器
192W/24V 非對(duì)稱半橋轉(zhuǎn)換器的效率在 93% 左右。AN-4153 360W/12V 倍流版在額定負(fù)載為20%-100% 時(shí)也有超過(guò)93%的滿負(fù)載效率。
在包含 PFC 前端的 200W/48V 電源條件下,LLC 諧振轉(zhuǎn)換器的效率在 93% 左右。通過(guò)同步整流,在該功率級(jí)下可以把效率提升至95%-96%。
三、兩種高效能電源設(shè)計(jì)及拓?fù)浞治?/strong>
電源在降低功耗上舉足輕重,因此面對(duì)法規(guī)標(biāo)準(zhǔn)和消費(fèi)者的更高要求時(shí),重新檢討其設(shè)計(jì)方式就顯得非常急迫。雖然可以改進(jìn)傳統(tǒng)的拓?fù)浣Y(jié)構(gòu)來(lái)達(dá)到更高效能要求,但可以明顯地看出,沿用舊式設(shè)計(jì)方式的產(chǎn)品,其性價(jià)比將會(huì)低。在本文中,我們將提出兩個(gè)能符合更高效能要求,并可控制目標(biāo)成本的設(shè)計(jì)方式,并將之和傳統(tǒng)的拓?fù)浣Y(jié)構(gòu)進(jìn)行比較。
傳統(tǒng)的拓?fù)浣Y(jié)構(gòu)
為特定應(yīng)用選擇拓?fù)浣Y(jié)構(gòu)時(shí)有幾個(gè)考慮因素,包括輸入電壓范圍是全球通用還是只針對(duì)特定地區(qū),輸出電壓是單一還是多重(電流大小也是重要的條件),效能目標(biāo),特別是在不同負(fù)載下的效能表現(xiàn)。傳統(tǒng)上,在大批量生產(chǎn)電源時(shí)多以成本,設(shè)計(jì)工程師對(duì)拓?fù)浣Y(jié)構(gòu)的熟悉度以及元件是否容易采購(gòu)為考慮因素,其他因素還包括設(shè)計(jì)是否容易實(shí)
現(xiàn)和設(shè)計(jì)方式是否在電源產(chǎn)業(yè)鏈中為大家所熟知等。
較受歡迎的傳統(tǒng)設(shè)計(jì)方式主要為單開關(guān)正向、雙開關(guān)正向和半橋結(jié)構(gòu),這些結(jié)構(gòu)提供了滿足目前需求的穩(wěn)固解決方案。不過(guò)如上所述,新興的標(biāo)準(zhǔn)需要電源能夠達(dá)成比先前更高的效能。過(guò)去,典型的臺(tái)式電腦電源可以達(dá)到60%~70%的最高效能,但現(xiàn)在則要求電源在額定負(fù)載的20%、50%和100%時(shí)都能達(dá)到最低80%的效能。同時(shí),最近更出現(xiàn)了希望能夠在低于20%負(fù)載時(shí)達(dá)到70%或以上效能的趨勢(shì),且待機(jī)功耗能夠持續(xù)下降。我們將探討三種傳統(tǒng)拓?fù)涞膬?yōu)缺點(diǎn),并介紹兩種新型的拓?fù)洹?/p>
1 單開關(guān)正向
圖1中的這個(gè)拓?fù)湎喈?dāng)受到歡迎,主要原因是元件數(shù)少且設(shè)計(jì)要求簡(jiǎn)單,但對(duì)于不同負(fù)載情況的高效能要求卻為這個(gè)拓?fù)鋷?lái)新挑戰(zhàn)。在接近滿載或滿載時(shí),這個(gè)拓?fù)涞男苁艿?0%占空比的限制。而在較輕負(fù)載時(shí),開關(guān)耗損是造成效能不佳的主要原因。許多較新的設(shè)計(jì)采用功率因數(shù)校正(PFC)前端來(lái)降低諧波電流,在400 V的PFC輸出電壓下,單開關(guān)正向方式被迫使用大于900 V的開關(guān),提高了FET的成本。
?
圖1 單開關(guān)正向拓補(bǔ)
2 雙開關(guān)正向
圖2是另一個(gè)使用相當(dāng)普遍的拓?fù)?,它是解決開關(guān)電壓限制問(wèn)題的升級(jí)版本。這依舊是一個(gè)會(huì)有高開關(guān)耗損的硬開關(guān)電路。其所帶來(lái)的問(wèn)題是需要使用門極驅(qū)動(dòng)變壓器或芯片驅(qū)動(dòng)電路來(lái)推動(dòng)高電壓端MOSFET。
?
圖2 雙開關(guān)正向拓補(bǔ)
3 半橋
圖3中的半橋變壓器是高功率要求的另一個(gè)選擇。和單開關(guān)或雙開關(guān)正向變壓器相反,半橋變壓器可以在兩個(gè)象限工作并降低原邊FET的電流。變壓器組成結(jié)構(gòu)和輸出整流比單一正向拓?fù)浣Y(jié)構(gòu)復(fù)雜,也存在高開關(guān)耗損問(wèn)題。
?
圖3 半橋拓補(bǔ)電路結(jié)構(gòu)
新興拓?fù)浣Y(jié)構(gòu)
為了符合更高效能的要求,業(yè)界已開發(fā)了數(shù)種新的拓?fù)浣Y(jié)構(gòu)。這些新電路拓?fù)洳灰欢ㄊ侵感掳l(fā)明,而是新近在商業(yè)大批量應(yīng)用的。其中,兩種最受重視的拓?fù)浞謩e為有源鉗位正激和雙電感加電容(LLC)。
1 有源鉗位正激
圖4中的有源鉗位正激拓?fù)涫且粋€(gè)存在已久的軟開關(guān)結(jié)構(gòu),雖然這種結(jié)構(gòu)和傳統(tǒng)的正向式拓?fù)浣Y(jié)構(gòu)類似,但過(guò)去一直被視為是難以實(shí)現(xiàn)的結(jié)構(gòu),因此主要應(yīng)用在特殊領(lǐng)域,比如電信領(lǐng)域。不過(guò),隨著新IC的推出,這種結(jié)構(gòu)的實(shí)現(xiàn)變得非常簡(jiǎn)單。
?
圖4 采用安森美半導(dǎo)體NCP1562的有源鉗位正激拓補(bǔ)結(jié)構(gòu)
在這個(gè)拓?fù)浣Y(jié)構(gòu)中,變壓器在主開關(guān)的整個(gè)關(guān)閉時(shí)間內(nèi)通過(guò)附屬開關(guān)串行的電容進(jìn)行復(fù)位,這樣做可以消除單開關(guān)正向結(jié)構(gòu)中的無(wú)效時(shí)間。它的主要優(yōu)點(diǎn)包括低開關(guān)耗損,可在50%以上占空比工作,降低了原邊開關(guān)的電流應(yīng)力。同時(shí),這個(gè)結(jié)構(gòu)也提供了自驅(qū)動(dòng)同步整流功能,省去了專用門極驅(qū)動(dòng)電路。加之低電壓MOSFET越來(lái)越低的價(jià)格,采用MOSFET和同步整流已經(jīng)成為實(shí)現(xiàn)低輸出電壓高電流整流的可行方案。
使用有源鉗位器件和進(jìn)行有源鉗位FET的控制雖然看起來(lái)會(huì)增加電路的復(fù)雜度,但卻可以通過(guò)節(jié)省緩沖電路、復(fù)位電路和較低整體開關(guān)要求加以補(bǔ)償。這個(gè)結(jié)構(gòu)也能夠在寬廣的輸入電壓范圍下工作,因而適合多種應(yīng)用,包括電視游戲機(jī)。
這個(gè)結(jié)構(gòu)的主要缺點(diǎn)是沒(méi)有大批量應(yīng)用,比如在計(jì)算機(jī)中,因此一般臺(tái)式機(jī)的設(shè)計(jì)工程師對(duì)它感到陌生。不過(guò)隨著像安森美半導(dǎo)體等公司不斷推出產(chǎn)品,這個(gè)拓?fù)浣Y(jié)構(gòu)的實(shí)現(xiàn)難度已經(jīng)降低了。在較大批量應(yīng)用中采用這個(gè)結(jié)構(gòu)也能夠降低采用元件的成本。這個(gè)拓?fù)涞牧硪蝗秉c(diǎn)是,和雙開關(guān)正向或半橋變壓器比較,需要較高額定電壓的開關(guān)。 <-- 2007-12-5 23:37:38--> 2 LLC諧振半橋
圖5中的LLC拓?fù)浣Y(jié)構(gòu)特別適用需要高輸出電壓的場(chǎng)合,如液晶和等離子電視等應(yīng)用。
?
圖5 LLC諧振半橋拓補(bǔ)結(jié)構(gòu)
和有源鉗位拓?fù)湟粯樱@也是一款因超低開關(guān)耗損達(dá)到超高效能的軟開關(guān)拓?fù)浣Y(jié)構(gòu)。其他優(yōu)點(diǎn)還包括不需輸出電感,因此可以降低實(shí)現(xiàn)的整體成本。最后,由于采用半橋配置,可以降低原邊元件的壓力。
另一方面,這個(gè)結(jié)構(gòu)也有一些缺點(diǎn),最主要的是增加了復(fù)雜的磁性設(shè)計(jì),輸出電容上的高紋波電流和可變頻率。同時(shí),這個(gè)結(jié)構(gòu)在設(shè)計(jì)較寬輸入電壓范圍上也比較困難。
各式拓?fù)浣Y(jié)構(gòu)的比較
雖然我們無(wú)法采用單一拓?fù)浣Y(jié)構(gòu)作為所有應(yīng)用的解決方案,但卻可以依具體情況來(lái)決定采用何種電路結(jié)構(gòu)。在這里,我們使用12V、20A輸出的變壓器設(shè)計(jì)來(lái)比較以上所述各式結(jié)構(gòu)的差異,比較重點(diǎn)放在主要的設(shè)計(jì)問(wèn)題,如原邊開關(guān)、整流器、磁性、存儲(chǔ)電容等。雖然還有其他差異點(diǎn),但不在本文的討論范圍內(nèi)。各式拓?fù)浣Y(jié)構(gòu)的差異結(jié)構(gòu)總結(jié)如下。
● 原邊開關(guān):在300~400Vdc的輸入電壓范圍,有源鉗位變壓器的原邊峰值電流最低,單開關(guān)和雙開關(guān)正向拓?fù)鋭t擁有和有源鉗位
類似的RMS電流,但卻因MOSFET額定電壓而會(huì)有較大的導(dǎo)電耗損。
● 諧振半橋變壓器的直流次級(jí)整流器電壓應(yīng)力最低,接著是有源鉗位,然后是單開關(guān)和雙開關(guān)正向變壓器。由于開關(guān)突波的關(guān)系,傳統(tǒng)電路結(jié)構(gòu)上的壓力更高。
● 保持時(shí)間要求可以通過(guò)增大電容容值或變壓器輸入范圍來(lái)達(dá)到。
● 在磁性方面,諧振半橋通過(guò)移除輸出電感提供明顯的簡(jiǎn)化,不過(guò)在變壓器設(shè)計(jì)上則會(huì)有相當(dāng)高的挑戰(zhàn)性。和傳統(tǒng)正向變壓器比較,有源鉗位變壓器在相同頻率下的輸出電感可以減小約13%。
● 諧振半橋變壓器由于沒(méi)有輸出電感,因此輸出電容電流紋波最高。
● 有源鉗位正激變壓器的開關(guān)頻率可以推升到更高(200~300kHz),硬開關(guān)拓?fù)浣Y(jié)構(gòu)則在150kHz以下。諧振半橋是一個(gè)可變頻率的變壓器,在滿載低電源電壓時(shí),其最低頻率通常設(shè)定在60~70kHz;高電源電壓輕載工作時(shí),最高頻率可以達(dá)到數(shù)百kHz。
四、電源設(shè)計(jì)功率因數(shù)校正(PFC)拓?fù)浣Y(jié)構(gòu)選擇
引言
隨著減小諧波標(biāo)準(zhǔn)的廣泛應(yīng)用,更多的電源設(shè)計(jì)結(jié)合了功率因數(shù)校正 (PFC) 功能。設(shè)計(jì)人員面對(duì)著實(shí)現(xiàn)適當(dāng)?shù)腜FC段,并同時(shí)滿足其它高效能標(biāo)準(zhǔn)的要求及客戶預(yù)期成本的艱巨任務(wù)。許多新型PFC拓?fù)浜驮x擇的涌現(xiàn),有助設(shè)計(jì)人員優(yōu)化其特定應(yīng)用要求的設(shè)計(jì)。
由于有源PFC設(shè)計(jì)可以讓設(shè)計(jì)人員以最少的精力滿足高效能規(guī)范的要求,因此在近年來(lái)取得了好的發(fā)展。通過(guò)簡(jiǎn)化主功率轉(zhuǎn)換段的設(shè)計(jì)和減少元件數(shù)目,包括用于通用操作的波段轉(zhuǎn)換開關(guān)和若干占用電容,此設(shè)計(jì)也附帶了一些優(yōu)勢(shì)。
拓?fù)溥x擇
由于輸入端存在電感,升壓轉(zhuǎn)換器是提供達(dá)至高功率因數(shù)的方法。此電感使輸入電流整形與線路電壓同相。但是,可以采用不同的方案來(lái)控制電感電流的瞬時(shí)值,以獲得功率因數(shù)校正。圖1為這些方案的簡(jiǎn)要概述。
?
圖1 PFC工作模式概述
a. 臨界導(dǎo)電模式 (CRM) PFC - 由于控制的設(shè)計(jì)較為簡(jiǎn)單,而且可與較低速升壓二極管配合使用,所以在較低功率應(yīng)用中通常采用這方法。近年來(lái),此方法獲創(chuàng)新的改進(jìn),提升了效率,MC33260 PFC 控制器提供跟隨升壓選項(xiàng),通過(guò)使升壓轉(zhuǎn)換器的輸出電壓隨著線路電壓的變化而變化,降低了33%的 MOSFET 導(dǎo)電損耗,減小了43%的升壓電感尺寸。此外,專為CRM和DCM應(yīng)用而設(shè)計(jì)的升壓二極管可提供更佳的正向壓降(MUR450, MUR550)。然而,CRM PFC仍受到一些限制,如較難過(guò)濾的可變頻率和接近零交叉的高開關(guān)頻率。
b. 不連續(xù)導(dǎo)電模式(DCM) PFC -此創(chuàng)新的方案延承了CRM的優(yōu)點(diǎn),并消除了若干限制,安森美半導(dǎo)體的NCP1601 DCM/CRM控制器便是一例。此器件可完全在DCM中工作并保持恒頻,也可以部分在CRM模式中工作。在第二種情況下,峰值電流與CRM維持在同一水平,但最高頻率明顯降低,減輕了濾波負(fù)擔(dān)。降低開關(guān)頻率的另一大優(yōu)點(diǎn)是有助降低輕載或空載功耗,以滿足各種高能效標(biāo)準(zhǔn)。NCP1601 [3] 具有專利控制架構(gòu),通過(guò)模式轉(zhuǎn)換保持PFC,提供比其它方法更為卓越的性能。圖2顯示了NCP1601A在100 W中的應(yīng)用,這種方法簡(jiǎn)單且有效 - 110 Vac 和滿載時(shí)的功率因數(shù)超過(guò)0.99且效率高達(dá) 94%。
?
圖2 NCP1601A DCM PFC 控制器用于100 W 應(yīng)用圖3 NCP1653 CCM PFC 控制器用于300 W應(yīng)用
c. 連續(xù)導(dǎo)電模式 (CCM) PFC - 由于這種方案恒頻且峰值電流較小,是較高功率 (>250 W) 應(yīng)用的首選方案。但是,傳統(tǒng)的控制解決方案較為復(fù)雜,牽涉到多個(gè)環(huán)路,以及以不精確著稱的模擬乘法器,并需在控制集成電路周圍放許多元件。隨著NCP1653(簡(jiǎn)單且穩(wěn)固的8引腳CCM PFC控制器)的推出,此方案得以簡(jiǎn)化。NCP1653并提供全套保護(hù)特性和跟隨升壓功能。如圖3所示,雖然NCP1653所需元件極少,但其性能卻并不比任何CCM 控制器遜色 (110 Vac, 300 W 時(shí)的THD為4 %,效率高達(dá)93%)。
?
圖3 NCP1653 CCM PFC 控制器用于300W 應(yīng)用
選擇標(biāo)準(zhǔn)
既然實(shí)行功率因數(shù)校正有多種新興方案可供選擇,那么應(yīng)該如何決定選擇哪種方案呢? 以下是簡(jiǎn)要的指南,幫助設(shè)計(jì)人員選擇適合的方案。
1. 功率水平
a. 如果功率水平低于150 W,最好采用CRM或DCM方案。至於__CRM或DCM,取決于你是想優(yōu)化滿載效率(請(qǐng)采用CRM);而如欲減少EMI問(wèn)題(請(qǐng)選擇DCM)。如上所述,NCP1601提供集兩種方案優(yōu)點(diǎn)于一身的極佳選擇方案。
b. 如功率水平高于250 W,CCM是首選方案。此方案雖然可保持峰值電流和RMS電流,但必須解決二極管反向恢復(fù)問(wèn)題。
c. 如功率水平在150 W與250 W之間,方案的選擇則取決于設(shè)計(jì)人員的磁件設(shè)計(jì)水平(CRM和DCM方案的升壓電感更具挑戰(zhàn)性),但CCM方案雖然較為昂貴,但較有把握。隨著NCP1653的推出,成本問(wèn)題已獲解決。
2. 其它系統(tǒng)要求
拓?fù)涞倪x擇還取決于其它系統(tǒng)要求。例如,如果需要使系統(tǒng)中的頻率同步,則不能采用CRM。此外,如果第二個(gè)功率段可處理較大范圍(在某些功率序列安排中可能需要)的輸入電壓,則應(yīng)選擇跟隨升壓。最后,如果電源的輸出電壓未有嚴(yán)格規(guī)定,則最好采用NCP1651提供的單段隔離PFC解決方案。
結(jié)語(yǔ)
設(shè)計(jì)人員可試驗(yàn)各種功率因數(shù)校正方案,以選擇適合其應(yīng)用的最佳方案。利用易用的設(shè)計(jì)工具可以快速順利地完成此任務(wù)。隨著世界各地監(jiān)管機(jī)構(gòu)日益加強(qiáng)能源監(jiān)管的參與力度以及全球化步伐進(jìn)一步加快,將有越來(lái)越多的系統(tǒng)需采用PFC電路。在此情況下,設(shè)計(jì)人員必須熟悉各種可選方案,以選擇最適合其應(yīng)用的方案。
評(píng)論
查看更多