電池容量計(jì)的一種實(shí)現(xiàn)方法
摘要:介紹一種計(jì)量電池容量的方法,即對(duì)電池充進(jìn)能量和放出能量進(jìn)行計(jì)算并乘以相應(yīng)的損失系數(shù)從而指示電池的容量。采用對(duì)電流變換后的脈沖計(jì)數(shù)的方法,實(shí)現(xiàn)適用多數(shù)充放電情況的電池容量計(jì)量。研究實(shí)施該方法的技術(shù)途徑,提出具體的設(shè)計(jì)電路,其樣機(jī)已投入試用。
關(guān)鍵詞:充放電電量電池容量計(jì)
A Kind of Method of Implementing Battery Capacity Meter
Abstract: Introduces a method of measuring battery capacity, which calculates the charging energy and discharging energy and then the data is multiplied by a loss factor. In the end the results can indicate the capacity. Uses the skill of counting the pulses which are changed from the currents, so the method can be used to measure battery capacity on most of occasions that variety batteries are charged and discharged by variety rules. Researches the technology route of implementing the method and designs the circuit in details. Nowadays the meter has been practiced well.
Keywords:Charging and discharging Coulomb Battery capacity meter
1引言
隨著環(huán)保意識(shí)的逐漸加強(qiáng),世界各國(guó)競(jìng)相開(kāi)展環(huán)保汽車的研制,我國(guó)也正在投入資金開(kāi)發(fā)以電池為動(dòng)力的電動(dòng)汽車。而電動(dòng)車必不可少的儀器就是電池容量計(jì),就象普通汽車的油量表一樣,告訴使用者電池還剩余多少容量,能夠行駛多少公里。實(shí)際上,不僅電動(dòng)車需要電池容量計(jì),許多使用電池的場(chǎng)合都對(duì)此有迫切的要求。傳統(tǒng)的對(duì)電池監(jiān)視的手段僅僅是一塊電壓表,而電壓卻不能準(zhǔn)確反映電池的容量,經(jīng)常出現(xiàn)電壓正常,卻無(wú)容量的現(xiàn)象。作為使用者常常感到困惑的就是不知電池還能使用多久,因此影響到許多關(guān)鍵場(chǎng)合的使用,還易出現(xiàn)誤判引起事故。因此研制一臺(tái)反映電池容量的儀器就顯得十分必要了。目前國(guó)外已有同類產(chǎn)品問(wèn)世,但可能由于技術(shù)保密的原因,未見(jiàn)介紹其實(shí)現(xiàn)的方法。
本文以電動(dòng)車為使用對(duì)象,提出了一種采用電量計(jì)量方法實(shí)現(xiàn)的電池容量計(jì),可在一定條件下計(jì)量電池容量。它基于這樣一種原理,即對(duì)電池充進(jìn)能量和放出能量進(jìn)行計(jì)算并乘以相應(yīng)的損失系數(shù)從而指示電池的容量(該系數(shù)應(yīng)考慮到充電效率及電池放電電流大小以及其它因素對(duì)電池容量的影響)。
2基本原理
電池的容量除了一些電池本身的因素外,主要取決于充電量和放電量,顯然如果始終能記錄下電池的充放電情況就可以測(cè)出容量。我們?cè)O(shè)想在傳統(tǒng)的單一電池上裝備這種稱之為電池容量計(jì)的儀器以達(dá)到顯示容量的目的。該容量計(jì)動(dòng)態(tài)監(jiān)視電池充進(jìn)電量的總和及放出總電量并運(yùn)算后直觀顯示。影響電池容量的其它因素綜合為一個(gè)損失系數(shù),該系數(shù)乘以充放電量的算數(shù)和即為電池剩余容量。由于電池的種類、大小、性能不盡相同,損失系數(shù)是不相同的,主要靠試驗(yàn)獲得,故這里不討論系數(shù)問(wèn)題,只研究完成計(jì)量電量功能的電路。
電池充放電有多種方式,恒流、限壓、脈沖、負(fù)脈沖等等,所以簡(jiǎn)單地用電流乘以時(shí)間計(jì)量容量的方式無(wú)法適應(yīng)除恒流外的其他方式,而積分方式又不能適應(yīng)負(fù)脈沖充電的需要,同時(shí)它需要時(shí)間參數(shù),亦不太適合。顯然電池容量計(jì)的設(shè)計(jì)應(yīng)滿足多數(shù)的充放電方式。無(wú)論何種充電方式,其影響電池容量的關(guān)鍵參數(shù)即為電流和時(shí)間,負(fù)脈沖充電情況下只是同時(shí)有負(fù)電流。為此我們?cè)O(shè)計(jì)了如下工作方式的電池容量計(jì)電路,原理方框圖見(jiàn)圖1。
首先監(jiān)測(cè)電池的充放電電流,將其轉(zhuǎn)換為電壓信號(hào)后放大,送入電壓頻率轉(zhuǎn)換器使其變?yōu)轭l率信號(hào),最后送入計(jì)數(shù)器記錄脈沖的個(gè)數(shù),通過(guò)一定方式將計(jì)數(shù)值顯示出來(lái),這就構(gòu)成了一臺(tái)電池容量計(jì)。實(shí)際上,頻率的高低代表了電流的大小,電流大則頻率高,在同一時(shí)間內(nèi)記錄的脈沖個(gè)數(shù)就多,反之亦然。而充放時(shí)間亦反映在對(duì)脈沖的計(jì)數(shù)上,時(shí)間長(zhǎng)則計(jì)數(shù)個(gè)數(shù)多。如此,就利用計(jì)數(shù)方式完成了對(duì)電池充放電量的計(jì)算。
圖1電池容量計(jì)原理框圖
絕對(duì)值放大器和可逆計(jì)數(shù)器二者的結(jié)合,實(shí)現(xiàn)了對(duì)充電中放電間隙(即負(fù)脈沖充電)的計(jì)量,同時(shí)用一套電路完成了充放電兩個(gè)方向的計(jì)算。充電時(shí)正向計(jì)數(shù),放電時(shí)反向計(jì)數(shù)(減數(shù)),用電流的流向控制可逆計(jì)數(shù)器的計(jì)數(shù)方向。
3方案論證及技術(shù)關(guān)鍵的解決
3.1電流取樣
電流取樣的目的是將電流信號(hào)變?yōu)殡妷盒盘?hào),一般有三種方式:
?。?)取樣電阻;
?。?)分流器;
?。?)霍爾器件(包括互感器類)。
從電動(dòng)車電池使用來(lái)看,電流較大,顯然使用取樣電阻并不合適,而分流器又太重且體積也較大,不太適用,故霍爾器件較為適用。其優(yōu)點(diǎn)是線性程度優(yōu)于0.1%,適于范圍較大的跟蹤,動(dòng)態(tài)性能好,響應(yīng)時(shí)間小于1μs,這樣可即時(shí)跟蹤汽車起動(dòng)的瞬時(shí)電流。另外,其尺寸小,重量輕適于在汽車上安裝。它的缺點(diǎn)是價(jià)格稍貴,但對(duì)于汽車上使用的電池價(jià)格來(lái)講完全可以忽略。由于選用可以購(gòu)買到的成熟產(chǎn)品,電路較簡(jiǎn)單不再列出。
3.2絕對(duì)值放大器
由于充放電電流方向不同,采用絕對(duì)值放大器,它將霍爾器件輸出的正負(fù)信號(hào)統(tǒng)一放大為正信號(hào),然后送往壓頻轉(zhuǎn)換器。
絕對(duì)值放大器的設(shè)計(jì)方法較多,從電源上來(lái)看,有單電源、雙電源兩種方式,采用的運(yùn)放個(gè)數(shù)有一個(gè)和多個(gè)。本機(jī)由于采用霍爾器件且為雙向電流,故單電源沒(méi)有優(yōu)點(diǎn),而單運(yùn)放的放大器,電阻取值太多,精度要求高,并且對(duì)負(fù)載亦應(yīng)考慮,不太適用。
本機(jī)采用由二運(yùn)放構(gòu)成的絕對(duì)值放大器,選用低失調(diào)、低漂移的運(yùn)算放大器0P-07,精度高且性能不受負(fù)載影響,這里苛求絕對(duì)值放大器的精度,不是為系統(tǒng)精度作貢獻(xiàn),而是從另外一點(diǎn)考慮的。這就是前面提到的,就電池容量計(jì)而言,對(duì)電池監(jiān)測(cè)的最好辦法應(yīng)是同電池一體,始終監(jiān)視電池狀況。而這就要求電池沒(méi)有充放電流時(shí),放大器的輸出為零,否則經(jīng)過(guò)長(zhǎng)期擱置后,容量計(jì)由于放大器誤差的關(guān)系指示充滿或放光,產(chǎn)生誤判。以高精度、低失調(diào)、低漂移設(shè)計(jì)完成后的樣機(jī),滿度誤差為1mv,零度誤差小于1mv。參見(jiàn)圖2。
圖2絕對(duì)值放大器原理圖
3.3壓頻轉(zhuǎn)換器
壓頻轉(zhuǎn)換器是電池容量計(jì)的核心部分,負(fù)責(zé)將放大的信號(hào)轉(zhuǎn)換為頻率信號(hào),它的線性度和精度直接影響到整機(jī)。實(shí)現(xiàn)壓頻轉(zhuǎn)換的方法也有很多種。從形式上看,有分立元件和專用集成芯片兩種形式,一般的分立元件精度、體積、調(diào)整復(fù)雜程度均高于集成芯片,但其價(jià)格較低,而專用芯片在線性度、電壓穩(wěn)定度、精度等指標(biāo)相對(duì)可接受的價(jià)格而言有所降低。我們考慮到體積和充放電全程跟蹤及性能價(jià)格比的問(wèn)題,選擇了VFC32為電壓頻率轉(zhuǎn)換器件,該器件較好的線性度為全程跟蹤精度提供了保證,并以較少的元件使體積縮小,電路原理見(jiàn)圖3。
圖3壓頻轉(zhuǎn)換器原理圖
3.4可逆計(jì)數(shù)器
計(jì)數(shù)器部分全部采用CMOS電路,一是功耗低,這對(duì)依靠電池本身供電顯得極為重要;二是其電平與運(yùn)放電平匹配,并使顯示范圍增大。見(jiàn)圖4。
圖4可逆計(jì)數(shù)器原理圖
采用了14級(jí)脈沖進(jìn)位二進(jìn)制計(jì)數(shù)器4020一片,4位可逆二進(jìn)制計(jì)數(shù)器4516二片,構(gòu)成21級(jí)計(jì)數(shù)器。其中高7位計(jì)數(shù)器數(shù)值有效作為計(jì)數(shù)值并輸出,而低14位則僅用來(lái)計(jì)數(shù)并不用作輸出,且4020是單向計(jì)數(shù),無(wú)減法功能。
此種設(shè)計(jì)有兩大優(yōu)點(diǎn):
?。?)4020是高集成度的計(jì)數(shù)器,可代替3片半4516來(lái)使用,這樣大大縮小了體積。
?。?)當(dāng)作加法時(shí),4020可精確到最低位;作減法時(shí),誤差為低十四位,但這個(gè)十四位也是一次性的最大誤差,無(wú)累加性,因?yàn)殡娐飞喜捎昧水惒?、同步?jì)數(shù)混用的方法。當(dāng)減去14個(gè)數(shù)(雖然4020是加),4020輸出異步脈沖4516減"1",如同作真正減法一樣,而4020的數(shù)值是不能輸出的,這使得結(jié)果十分精確。
3.5控制電路
該部分包含有預(yù)置電路、防溢出電路、計(jì)數(shù)方向控制電路。
本樣機(jī)為適用范圍寬,在計(jì)數(shù)器的預(yù)置和控制電路上均增加了撥動(dòng)開(kāi)關(guān),這樣可以通過(guò)撥動(dòng)開(kāi)關(guān)設(shè)置計(jì)數(shù)部分初值和終值,可達(dá)到檢測(cè)使用已知電池電容的目的,比較方便。
同時(shí)為防計(jì)數(shù)器雙向溢出,分別設(shè)置防溢出電路,使計(jì)數(shù)器計(jì)到零和滿值時(shí)均不再計(jì)數(shù),以防錯(cuò)誤。
通過(guò)對(duì)電流流向的比對(duì),輸出脈沖控制可逆計(jì)數(shù)器的計(jì)數(shù),構(gòu)成方向控制電路。
3.6顯示
顯示有數(shù)字式、指針式兩種方式。為保證直觀的顯示,同時(shí)盡可能沿用普通汽車的儀表,仍采用汽車上原有指示電池電壓的電壓表。而在電壓表上設(shè)置一個(gè)開(kāi)關(guān),通過(guò)它來(lái)切換電壓、容量的指示,這樣較為方便。
這需要將計(jì)數(shù)器的二進(jìn)制數(shù)轉(zhuǎn)化為電壓。顯然用D/A轉(zhuǎn)換是可以的,但電路復(fù)雜程度上升,成本也有所提高。故為了簡(jiǎn)化電路我們僅借用D/A轉(zhuǎn)換網(wǎng)絡(luò)的思想,利用權(quán)電阻T形網(wǎng)絡(luò)將4516的7位數(shù)值變換成模擬量輸出,推動(dòng)電壓表指示,見(jiàn)圖5。
圖5 顯示電路原理圖
3.7工作電源部分
電池容量計(jì)不同于其它儀器的是它只能使用電池作為電源,而由于電池電壓的變化及波動(dòng),直接使用顯然是不合適的,為此必須由電池引出產(chǎn)生二次電源。
首先霍爾器件需電源±12V,電路控制計(jì)數(shù)等部分也亦借用±12V,另外我們考慮到為了使容量指示更直觀清晰,其最大電壓范圍應(yīng)大些,同時(shí)也能充分利用其電壓表有效指示。其電壓表范圍為40V,而電池電壓最高為30V,故設(shè)定容量指示最大指示為28V,這就需要電源電壓為30V。
由于電池起動(dòng)時(shí)有大電流放電,使電壓波動(dòng)十分厲害,約15~30V,為適應(yīng)其變化,同時(shí)減小容量計(jì)自身功耗,提高效率,設(shè)計(jì)全部采用開(kāi)關(guān)電源。
首先+12V的獲得是采用LM2575降壓調(diào)整器,該芯片輸入電壓可達(dá)40V,固定振蕩頻率52kHz,電壓、電流調(diào)整率較好,適應(yīng)容量計(jì)的要求。
?。?2V是利用+12V為輸入,通過(guò)34063DC/DC變換器加以變換而成。這樣損失了部分功率。我們?cè)O(shè)計(jì)用M2575HV(輸入電壓60V)由電池電壓直接引入,但由于60V的LM2575HV未能買到,只得作罷。將來(lái)如有批量,可定貨。好在-12V功率有限,損失較小。 30V一組電源,其電壓高,電流小,如采用普通DC變換器如2575或其他器件,體積過(guò)大,且磁心元件等都大為浪費(fèi),得不償失。故我們?cè)谠O(shè)計(jì)中一直在尋找簡(jiǎn)潔的方法,最后經(jīng)試驗(yàn)決定利用555振蕩器升壓并采用倍壓整流的方法將12V提升至30V,效果極好,見(jiàn)圖6。
4產(chǎn)品的設(shè)計(jì)與計(jì)算
4.1電壓/頻率關(guān)系的設(shè)定
電壓0~10V對(duì)應(yīng)頻率0~10kHz
圖6 30V電源原理圖
電流0~1000A對(duì)應(yīng)電壓0~10V
這幾個(gè)值的選取,綜合考慮了霍爾元件、放大器、F/V轉(zhuǎn)換設(shè)計(jì)的最佳值及試驗(yàn)樣機(jī)的需要。
4.2計(jì)數(shù)位數(shù)
4020-14位4516兩片共8位,加起來(lái)為22位,僅采用21位,其計(jì)數(shù)個(gè)數(shù)為:
221=2.097152×106。
對(duì)10kHz的計(jì)數(shù)時(shí)間
T=(221×1/104)秒=3.49分。
當(dāng)10kHz對(duì)應(yīng)1000A時(shí),對(duì)45Ah電池來(lái)講
T=C/I=45/1000=0.045h=2.7分<3.49分 ,
可見(jiàn)計(jì)時(shí)已夠,滿度計(jì)時(shí)安時(shí)數(shù)為
(221×1/104)×1000/3600=58.25Ah。
4.3誤差的計(jì)算
前14級(jí)計(jì)數(shù)時(shí)間為△T=214,總計(jì)時(shí)為T(mén)=221,相對(duì)誤差△T/T=214/221=0.78%。
可見(jiàn)前14級(jí)誤差極小,尚不足1%,且其僅在做減法時(shí)一次性出現(xiàn),可以忽略。故采用一片4020代替三片4516是合理的。
5性能測(cè)試結(jié)果
整機(jī)測(cè)試,條件為充放電流15A,電壓(代表容量)指示滿容量為28.002V,電池容量放盡后,電壓(代表容量)指示為0V,指示容量與實(shí)際容量誤差為3%,符合設(shè)計(jì)要求。
6結(jié)論
在輸出容量等于輸入容量乘以損失系數(shù)的模式下,本文以電動(dòng)車為使用對(duì)象,對(duì)輸入取樣、絕對(duì)值放大、壓頻轉(zhuǎn)換、顯示及工作電源各部分作了深入細(xì)致的闡述,進(jìn)行了非常有益的探索,是目前計(jì)量電池容量的有效方法之一,適用于無(wú)記憶效應(yīng)、性能相對(duì)穩(wěn)定的電池。
評(píng)論
查看更多