一種新穎的ZVZCSPWM全橋變換器?? 摘要:提出了一種新穎的零電流零電壓開關(guān)(ZCZVS)PWM全橋變換器,通過增加一個(gè)輔助電路的方法實(shí)現(xiàn)了變換器的軟開關(guān)。與以往的ZCZVSPWM全橋變換器相比,所提出的新穎變換器具有電路結(jié)構(gòu)簡(jiǎn)單、整機(jī)效率高以及電流環(huán)自適應(yīng)調(diào)整等優(yōu)點(diǎn),這使得它特別適合高壓大功率的應(yīng)用場(chǎng)合。詳細(xì)分析了該變換器的工作原理及電路設(shè)計(jì),并在一臺(tái)功率為4kW,工作頻率為80kHz的通信用開關(guān)電源裝置上得到了實(shí)驗(yàn)驗(yàn)證。 關(guān)鍵詞:全橋變換器;零電壓開關(guān);零電流開關(guān);軟開關(guān);脈寬調(diào)制
0??? 引言 ??? 移相全橋零電壓PWM軟開關(guān)(PS-FB-ZVS)變換器與移相全橋零電壓零電流PWM軟開關(guān)(PS-FB-ZVZCS)變換器是目前國(guó)內(nèi)外電源界研究的熱門課題,并已得到了廣泛的應(yīng)用。在中小功率的場(chǎng)合,功率器件一般選用MOSFET,這是因?yàn)镸OSFET的開關(guān)速度快,可以提高開關(guān)頻率,采用ZVS方式,就可將開關(guān)損耗減小到較為理想的程度[1]。而在高壓大功率的場(chǎng)合,IGBT更為合適。但I(xiàn)GBT的最大的缺點(diǎn)是具有較大的開關(guān)損耗,尤其是由于IGBT的“拖尾電流”特性,使得它即使工作在零電壓情況下,關(guān)斷損耗仍然較大,要想在ZVS方式下減少關(guān)斷損耗,則必須加大IGBT的并聯(lián)電容。然而由于輕載時(shí)ZVS很難實(shí)現(xiàn)(滯后臂的ZVS更難實(shí)現(xiàn)),因此ZVS方案對(duì)于IGBT來說并不理想。若采用常規(guī)的移相全橋軟開關(guān)變換器,其優(yōu)點(diǎn)是顯而易見的,即功率開關(guān)器件電壓、電流額定值小,功率變壓器利用率高等,但是它們卻也存在著各種各樣的缺點(diǎn):有的難以適用于大功率場(chǎng)合;有的要求很小的漏感;有的電路較為復(fù)雜且成本很高[2][3][4][5][6]。 ??? 本文提出了一種新穎的ZVZCS PWM全橋變換器,它能有效地改進(jìn)以往所提出的ZVZCS PWM全橋變換器的不足。這種變換器是在常規(guī)零電壓PWM全橋變換器的次級(jí)增加了一個(gè)輔助電路,此輔助電路的優(yōu)點(diǎn)在于沒有有損元件和有源開關(guān),且結(jié)構(gòu)簡(jiǎn)單。次級(jí)整流二極管的電壓應(yīng)力與傳統(tǒng)PWM全橋變換器相等,而ZCS具有最小的環(huán)路電流值。電流環(huán)能夠根據(jù)負(fù)載的變化情況自動(dòng)進(jìn)行調(diào)整,從而保證了負(fù)載在較大范圍內(nèi)變化時(shí)變換器同樣具有較高的效率。 1??? 工作原理 ??? 該ZVZCS PWM全橋變換器主電路如圖1所示。它是在傳統(tǒng)的零電壓PWM全橋變換器的次級(jí)增加了一個(gè)輔助電路,同時(shí),該變換器還采用了移相控制方式。在圖1中,S1和S3分別超前于S4和S2一個(gè)相位,稱S1和S3組成的橋臂為超前臂,S2和S4組成的橋臂為滯后臂。C1和C3分別是S1和S3的外接電容。Lr是諧振電感,它包括了變壓器的漏感。每個(gè)橋臂的兩個(gè)功率管成180°互補(bǔ)導(dǎo)通,兩個(gè)橋臂的導(dǎo)通角相差一個(gè)相位,即移相角,通過調(diào)節(jié)移相角的大小來調(diào)節(jié)輸出電壓。超前臂開關(guān)管實(shí)現(xiàn)零電壓導(dǎo)通和關(guān)斷的工作原理與ZVSPWM全橋變換器相同,而滯后臂開關(guān)管是通過輔助電路來實(shí)現(xiàn)零電流導(dǎo)通和關(guān)斷的,由于輸出電感的儲(chǔ)能用來實(shí)現(xiàn)超前臂開關(guān)管的ZVS,所以可以用外接電容來減小開關(guān)損耗。通過對(duì)Ch放電,流過變壓器的原邊電流在諧振周期內(nèi)減小到零,從而實(shí)現(xiàn)了滯后橋臂的ZCS。
圖1??? 新 穎ZVZCS PWM全 橋 變 換 器 主 電 路 圖 ??? 為了便于分析變換器的穩(wěn)定工作狀態(tài),而作如下假設(shè): ??? ——所有開關(guān)管、二極管、電容、電感均為理想元器件; ??? ——輸出濾波電感Lf足夠大,在一個(gè)開關(guān)過程中可以等效為一個(gè)恒流源。 ??? 在半個(gè)工作周期內(nèi),變換器有8種開關(guān)模態(tài)。因?yàn)?,電流環(huán)能夠根據(jù)負(fù)載的變化而作相應(yīng)的調(diào)整,所以,這些開關(guān)模態(tài)在負(fù)載較輕的情況下變化很小。 1.1??? 變換器在滿載條件下工作 ??? 假定變換器工作在滿載條件下,其各個(gè)模態(tài)的等效電路及主要波形圖如圖2和圖3所示。
(a) 模 態(tài)1[t0,t1]??? (b) 模 態(tài)2[t1,t2]??? (c) 模 態(tài)3[t2,t3] (d) 模 態(tài)4[t3,t4]??? (e) 模 態(tài)5[t4,t5]??? (f) 模 態(tài)6[t5,t6]
(g) 模 態(tài)7[t6,t7]??? (h) 模 態(tài)8[t7,t8] 圖2??? 各 個(gè) 開 關(guān) 模 態(tài) 的 等 效 電 路
圖3??? 主 要 波 形 圖 ??? 1)開關(guān)模態(tài)1[t0,t1]??? 在t0時(shí)刻,開關(guān)管S1及S4導(dǎo)通,輸入電壓Vs加到了變壓器的漏感Lr上,原邊電流ip從零開始線性增加,在t1時(shí)刻,電流ip增加到與輸出電感電流值相等。電流ip的變化式如式(1)所示。 ??? ip(t)=(Vs/Lr)t(1) ??? 2)開關(guān)模態(tài)2[t1,t2]??? t1時(shí)刻后,開關(guān)管S1和S4繼續(xù)導(dǎo)通,輸入功率傳到了變壓器的次級(jí)。輔助線圈的漏感Llks與吸持電容Ch產(chǎn)生諧振,給Ch充電,Ch上的電壓及電流可由式(2)及式(3)得到。 ??? vch(t)=[1-cos(ωst)](2) ??? ich=-sin(ωst)(3) ??? VH=(4) 式中:ωs=; ????? n=N1/N2; ????? m=N3/N4。 ??? 在t2時(shí)刻,Ch上的電壓達(dá)到最大值VH,同時(shí)電流減小為零。為了防止二極管Dd在該工作模態(tài)下導(dǎo)通,Ch的最大電壓值VH應(yīng)當(dāng)設(shè)計(jì)得比輸入電壓反射到次級(jí)的電壓Vs/n小。 ??? 3)開關(guān)模態(tài)3[t2,t3]??? 當(dāng)Ch的充電電流減小到零的時(shí)候,Dc零電流關(guān)斷,Ch上的電壓保持在VH。原邊電流仍被傳遞到輸出端。 ??? 4)開關(guān)模態(tài)4[t3,t4]??? 在t3時(shí)刻,S1關(guān)斷,原邊電流給電容C1充電,使C3放電,變壓器原邊電壓vAB開始線性下降,即 ??? vAB(t)=Vs-t(5) 式中:Io為輸出電流; ????? Ceq=C1+C3。 ??? 變壓器的次級(jí)電壓vsec以相同的速率下降,直到t4時(shí)刻其值與Ch上的電壓值相等為止。 ??? 5)開關(guān)模態(tài)5[t4,t5]??? 當(dāng)vsec下降到VH時(shí),二極管Dd導(dǎo)通,vsec被箝位在Ch的電壓值。變壓器的原邊電壓vAB還以與先前同樣的速率下降到零,而vsec則緩慢地下降。在該模態(tài)下,因?yàn)榕c原邊電壓相比,vsec的下降非常緩慢,因此可以把vsec看作常數(shù)。變壓器次級(jí)電壓反射到初級(jí)上的電壓值和初級(jí)電壓值之差加在了諧振電感Lr上,變壓器原邊電流和電壓分別按式(6)及式(7)規(guī)律下降。 ??? ip(t)=cos(ωbt)(6) ??? vAB(t)=nVH-sin(ωbt)(7) 式中:ωb=。 ??? 到t5時(shí)刻,C3上的電量被完全釋放,C3電壓下降到零,同時(shí)開關(guān)管S3零電壓導(dǎo)通。原邊電壓vAB也下降到零。 ??? 6)開關(guān)模態(tài)6[t5,t6]??? 該模態(tài)下,變壓器次級(jí)電壓反射到初級(jí)上的電壓加到了變壓器的漏感上,原邊電流以更快的速率下降到零。
圖4??? Ch不同最大電壓值VH對(duì)應(yīng)的ZVS范圍 ??? ip(t)=cos(ωbtm5)-sin(ωct)(8) 式中:ωc=; ????? tm5=t5-t4; ????? Zc=。 ??? 變壓器次級(jí)電壓按式(9)規(guī)律下降。 ??? vsec(t)=VHcos(ωct)(9) ??? 7)開關(guān)模態(tài)7[t6,t7]??? 原邊電流復(fù)位,整流二極管關(guān)斷。電容Ch通過Dd放電,向負(fù)載提供電流。變壓器次級(jí)電壓按式(10)規(guī)律下降到零。 ??? vsec(t)=VHcos(ωctm6)-t(10) 式中:tm6=t6-t5。 ??? 8)開關(guān)模態(tài)8[t7,t8]??? Ch完全放電,輸出感應(yīng)電流通過續(xù)流二極管Df續(xù)流。在t8時(shí)刻,開關(guān)管S4的驅(qū)動(dòng)脈沖下降為零,S4零電流關(guān)斷。 1.2??? 變換器在輕載條件下工作 ??? 假定變換器工作在輕載條件下,隨著負(fù)載電流的降低,Ch在模態(tài)7時(shí)不能完全放電,其上電流在t10時(shí)刻以前連續(xù)地提供給負(fù)載,其電壓的最大值與最小值之間的差值可通過對(duì)自身的放電電流積分來獲得,如式(11)所示。 ??? =ICh(t)dt≌(1-D)(11) 式中:Ts為開關(guān)周期。 ??? 由式(11)可以看出,在帶輕載的條件下,式(3)所表示的Ch上的電流產(chǎn)生如下變化。 ??? iCh(t)=-()sin(ωct) ??? ?≌-(1-D)sin(ωct)(12) ??? 從式(12)可以看出,環(huán)路電流對(duì)吸持電容的充放電隨著負(fù)載電流的降低而降低,也就是說電流環(huán)可根據(jù)負(fù)載的情況自動(dòng)進(jìn)行調(diào)整。 2??? 電路設(shè)計(jì) 2.1??? 超前臂的ZVS條件 ??? 為了實(shí)現(xiàn)超前臂的ZVS,開關(guān)電壓應(yīng)當(dāng)在死區(qū)時(shí)間內(nèi)下降到零,即: ??? tdead>tm4+tm5(13) 式中: ??? tm4=t4-t3=nCeq(14) ??? tm5=t5-t4=arcsin=arcsin(15) ??? 從式(15)可以看出,保證開關(guān)管實(shí)現(xiàn)ZVS的最小電流可由式(16)得到。 ??? =n2VH(16) ??? 不同的吸持電容Ch數(shù)值與最大電壓值VH所對(duì)應(yīng)的ZVS范圍如圖4所示。開關(guān)管超前臂的關(guān)斷損耗可通過給IGBT增加外接緩沖電容來減小。從圖4還可以看出大電容Ceq對(duì)ZVS范圍的限制。因此,Ceq的選擇應(yīng)綜合考慮ZVS范圍和超前臂的開關(guān)關(guān)斷損耗。 2.2??? 滯后臂的ZCS條件 ??? 吸持電容的歸一化值如式(17)所示。 ??? Chn=(17) ??? 圖5所示為吸持電容不同歸一化值所對(duì)應(yīng)的原邊電流的復(fù)位情況。為了實(shí)現(xiàn)滯后臂的ZCS,Ch的能量應(yīng)該足夠大,從而通過Lr使原邊電流復(fù)位,且原邊電流應(yīng)當(dāng)在滯后臂關(guān)斷之前減小到 ??? 圖5不同歸一化Ch值對(duì)應(yīng)的原邊電流的復(fù)位零。從式(11)、式(12)、式(15)、式(16)、式(17)可得到式(18)。 ??? arcsin(1-D)(18) ??? 從式(18)和圖5可以看出,為了確保ZCS,應(yīng)當(dāng)增加Ch或VH的值。但是,VH的最大值不能高于輸入電壓反射到次級(jí)的電壓Vs/n;同樣,大電容Ch增大了環(huán)路電流,而環(huán)路電流又通過Ch間接加到了負(fù)載。綜合考慮,軟開關(guān)在變換器功耗方面的效果不僅與開關(guān)損耗的減小有關(guān),還與由軟開關(guān)引起的附加導(dǎo)通損耗有關(guān)。為了獲得預(yù)期的效率,要求在設(shè)計(jì)時(shí)Ch的值取得越小越好,從而使附加導(dǎo)通損耗最小化。
圖5??? 不同歸一化Ch值對(duì)應(yīng)的原邊電流的復(fù)位 2.3??? 輸出耦合電感 ??? 為了保證輔助電路二極管Dc的軟變換,輸出耦合電感的漏感Llks應(yīng)當(dāng)滿足式(19)。 ??? Llks<(19) 式中:Dmin為最小占空比。 ??? 給Ch充電的諧振電流也耦合到了輸出電感電流中,從而增加了輸出電容的電流紋波。因此,Llks應(yīng)當(dāng)在滿足式(19)的條件下盡量取大,以減小諧波電流的有效值。 3??? 實(shí)驗(yàn)結(jié)果 ??? 為了驗(yàn)證ZVZCS PWM全橋變換器的工作原理和性能,在實(shí)驗(yàn)室完成了一臺(tái)80V/50A,80kHz的樣機(jī),其電路如圖6所示,參數(shù)如下:
圖6??? 樣機(jī)電路原理圖 ??? 輸入直流電壓Vs=630(1±10%)V; ??? 輸出直流電壓Vo=80V; ??? 變壓器原副邊匝比N1∶N2=5.33,變壓器原邊漏感Lr=9μH; ??? 輸出濾波電容Co=10000μF(電解電容); ??? 輸出濾波電感Lf=20μH,N3∶N4=1.12,漏感Llks=1.8μH; ??? 開關(guān)管S1~S4(IGBT)??? IRGPH50KK2(1200V,30A); ??? 輸出整流二極管Dc,Dd,Df,Drec??? C60P40FE(400V,60A); ??? C1=C3=1nF; ??? Ch=0.47μF(電解電容); ??? R=30Ω,C=2.2nF,C′=6.6nF; ??? 開關(guān)頻率f=80kHz。 ??? 圖7給出了實(shí)驗(yàn)波形。從圖7(a)可以看出,在諧振周期內(nèi),原邊電流減小到零,從而消除了原邊的拖尾電流。從圖7(c)可以看出,通過S4的電流在驅(qū)動(dòng)脈沖下降為零之前已經(jīng)減小到零,從而S4實(shí)現(xiàn)零電流關(guān)斷。從圖7(d)可以看出,在死區(qū)時(shí)間內(nèi),S1的電壓減小到零,從而S1實(shí)現(xiàn)零電壓導(dǎo)通。從圖7(e)和(f)可以看出,在一個(gè)諧振周期內(nèi),Ch在滿載時(shí)完全放電,而在輕載時(shí)卻沒有完全放電,使得環(huán)路電流根據(jù)負(fù)載條件變化作適應(yīng)性調(diào)整。 ??? 圖8給出了根據(jù)原理樣機(jī)得到的效率曲線。滿載時(shí)效率最高,達(dá)到94%。
(a)??? 變壓器原邊電壓和電流的波形 (b)??? 變壓器次級(jí)電壓和吸持電容電壓波形 (c)??? 滯后臂S4的零電流關(guān)斷波形
(d)??? 超前臂S1的零電壓導(dǎo)通波形 (e)??? 滿載時(shí)吸持電容上的電壓電流波形 (f)??? 25%負(fù)載時(shí)吸持電容上的電壓電流波形 圖7??? 實(shí)驗(yàn)波形
圖8??? 原理樣機(jī)效率曲線 4??? 結(jié)語 ??? 本文提出了一種新穎的ZVZCS PWM全橋變換器,并具體分析了它的工作原理、電路設(shè)計(jì)及性能。最后通過一臺(tái)4kW的原理樣機(jī)的試驗(yàn)結(jié)果,證明了該變換器具有以下主要優(yōu)點(diǎn): ??? ——所采用的輔助電路無有源開關(guān); ??? ——次級(jí)整流二極管具有與傳統(tǒng)的全橋PWM變換器相同的電壓應(yīng)力值; ??? ——對(duì)吸持電容充放電的環(huán)路電流可根據(jù)負(fù)載的變化進(jìn)行自適應(yīng)調(diào)整; ??? ——輔助電路二極管Dc實(shí)現(xiàn)了軟變換; ??? ——能夠使變換器在開關(guān)頻率為80kHz且滿載時(shí)效率高達(dá)94%。 |
一種新穎的ZVZCSPWM全橋變換器
- ZVZCSPWM(5026)
相關(guān)推薦
450W多路DC/DC變換器的相關(guān)資料分享
1 概述450W多路DC/ DC 變換器是一種直流變換開關(guān)電源,其輸入電壓為直流27V ,電源輸出分別為直流±20V 10A 和5V 10A 三種不同的類型,其中電源的輸入與輸出隔離,且輸出電源
2021-11-17 08:02:27
8KW碳化硅全橋LLC解決方案
高壓輸入下,高開關(guān)頻率成為可能。 下圖給出了典型三電平全橋諧振變換器的電路。 三電平全橋LLC變換器 三電平變換器有其獨(dú)有的優(yōu)點(diǎn),比如每個(gè)Mosfet只需要承受一半的輸入電壓;當(dāng)然,也有缺點(diǎn),比如
2018-10-17 16:55:50
一種300w的交流-直流變換器設(shè)計(jì)方案
設(shè)計(jì)并演示了一種300w的交流-直流變換器,其效率> 94%在90vac和100%負(fù)載條件下,估計(jì)外殼尺寸為300cc包括圖騰柱PFC輸入級(jí),LLC dc-dc級(jí)和同步整流輸出階段。該
2023-06-16 10:30:50
一種寬輸出范圍的混合諧振半橋正反激變換器控制方法
占空比即可實(shí)現(xiàn)寬輸出電壓,就可以完成5~30V的輸出電壓范圍調(diào)節(jié),兩種控制方案結(jié)合起來就可以實(shí)現(xiàn)十倍寬范圍和全范圍ZVS工作的高效率的電源轉(zhuǎn)換應(yīng)用?! ⌒〗Y(jié):通過混合不對(duì)對(duì)稱半橋和對(duì)稱半橋諧振變換器的控制
2023-03-23 14:19:33
一種抗干擾能力較強(qiáng)的DC?DC變換器
技術(shù)總結(jié)本發(fā)明公開了一種抗干擾能力較強(qiáng)的DC?DC變換器,包括電連接在一起的雷擊浪涌防護(hù)器、電磁脈沖防護(hù)器EMP、浪涌抑制器、EMI濾波器和電壓轉(zhuǎn)換電路,所述雷擊浪涌防護(hù)器包括電連接在一起的壓敏電阻
2021-11-17 07:15:56
BOOST升壓變換器的基本原理是什么
將二個(gè)電壓疊加就實(shí)現(xiàn)的電壓的提升,這就是升壓變換器的基本原理。使用儲(chǔ)能元件從輸入電源獲取能量得到一個(gè)電壓,然后將它和輸入電壓順向串聯(lián),就可以實(shí)現(xiàn)升壓功能。電容和電感是二種常用的儲(chǔ)能元件,如果使用電
2021-12-29 06:01:10
Buck-Boost變換器的兩種工作方式解析
Buck變換器也稱降壓式變換器,是一種輸出電壓小于輸入電壓的單管不隔離直流變換器。圖中,Q為開關(guān)管,其驅(qū)動(dòng)電壓一般為PWM(Pulse、width、modulation脈寬調(diào)制)信號(hào),信號(hào)周期為Ts
2021-03-18 09:28:25
DC-DC變換器最基礎(chǔ)的主要有三種
上一節(jié)提到的開關(guān)電源的系統(tǒng)框圖中,DC-DC變換器是其中一個(gè)重要的組成部分DC-DC變換器最基礎(chǔ)的主要有三種:Buck變換器,Boost變換器和Buck-Boost變換器Buck變換器:即降壓變換器
2021-10-29 06:52:05
DC-DC變換器的基本電路
DC-DC是英語直流變直流的縮寫,所以DC-DC電路是某直流電源轉(zhuǎn)變?yōu)椴煌妷褐档碾娐?。DC-DC變換器的基本電路有升壓變換器、降壓變換器、升降壓變換器三種。在同一電路中會(huì)有升壓反向、降壓升壓等功能
2021-11-17 06:37:14
DC/DC變換器中輸出濾波器的比較
軟開關(guān)技術(shù),使得開關(guān)頻率得以提高,從而進(jìn)一步減小濾波元件的體積。 本篇結(jié)合半波整流和全波整流方式,對(duì)恒頻PWM變換器和諧振類變換器中的整流級(jí)電壓進(jìn)行了歸類,在考慮諧波含量、開關(guān)頻率、軟開關(guān)技術(shù)的情況下
2013-01-22 15:54:30
DCDC變換器建模
DCDC變換器建模一、開關(guān)電源建?;靖拍疃CM下變換器建模1.狀態(tài)平均的概念2.推導(dǎo)變換器的狀態(tài)空間平均方程3.對(duì)變換器的狀態(tài)空間平均方程進(jìn)行線性化處理4.平均開關(guān)模型三、DCM下變換器建模
2021-10-29 08:57:11
DCDC變換器的原理
了一大熱門?,F(xiàn)代開關(guān)電源的需求越來越高。向著高空間利用率,高能量密度,高轉(zhuǎn)換效率的方向追求。其中,LLC拓?fù)涫钱?dāng)前開關(guān)變換器中很流行的、很熱門的一種變換器。主要是由諧振電感,勵(lì)磁電感和諧振電容組成。利用諧振網(wǎng)絡(luò)的諧振過程,電流和電壓會(huì)周期性的出現(xiàn)過零點(diǎn)的情況,從而軟開關(guān)提供了機(jī)會(huì)。
2021-12-28 07:48:23
DCDC變換器輕載時(shí)三種工作模式
的輸出負(fù)載從滿載到輕載然后到空載變化的過程中,系統(tǒng)的工作模式也會(huì)發(fā)生相應(yīng)的改變。下面以降壓型Buck變換器為例說明DCDC變換器輕載時(shí)的工作模式。降壓型Buck變換器在輕載有三種工作模式:突發(fā)模式、跳
2016-08-31 17:01:16
DCDC變換器輕載時(shí)的三種工作模式
?! ∠旅嬉越祲盒虰uck變換器為例說明DCDC變換器輕載時(shí)的工作模式。降壓型Buck變換器在輕載有三種工作模式:突發(fā)模式、跳脈沖模式和強(qiáng)迫連續(xù)模式。下面將詳細(xì)的闡述了這三種模式的工作作原理及其
2019-03-14 18:00:00
FSFR1800電源開關(guān)在半橋諧振變換器中的典型應(yīng)用
FSFR1800電源開關(guān)(FPS)在半橋諧振變換器中的典型應(yīng)用。 FSFR系列包括專為高效半橋諧振轉(zhuǎn)換器設(shè)計(jì)的高度集成的功率開關(guān)
2020-06-15 16:18:50
LLC變換器設(shè)計(jì)要素(資料下載)
最近 LCC 諧振變換器備受關(guān)注,因?yàn)樗鼉?yōu)于常規(guī)串聯(lián)諧振變換器和并聯(lián)諧振變換器:在負(fù)載和輸入變化較大時(shí),頻率變化仍很小,且全負(fù)載范圍內(nèi)切換可實(shí)現(xiàn)零電壓轉(zhuǎn)換(ZVS)。本文介紹了LLC 型諧振
2016-01-19 14:54:05
LLC諧振變換器的研究
LLC諧振變換器的研究諧振變換器相對(duì)硬開關(guān)PWM變換器,具有開關(guān)頻率高、關(guān)斷損耗小、效率高、重量輕、體積小、EMI噪聲小、開關(guān)應(yīng)力小等優(yōu)點(diǎn)。而LLC諧振變換器具有原邊開關(guān)管易實(shí)現(xiàn)全負(fù)載范圍內(nèi)的ZVS
2018-07-26 08:05:45
LLC諧振變換器的設(shè)計(jì)要素
最近LCC諧振變換器備受關(guān)注,因?yàn)樗鼉?yōu)于常規(guī)串聯(lián)諧振變換器和并聯(lián)諧振變換器:在負(fù)載和輸入變 化較大時(shí),頻率變化仍很小,且全負(fù)載范圍內(nèi)切換可實(shí)現(xiàn)零電壓轉(zhuǎn)(ZVS)。本文介紹了LLC型諧振變換器的分析
2019-08-08 11:11:37
STM32單片機(jī)用于移相控制的全橋PWM變換器
關(guān)注、星標(biāo)公眾號(hào),不錯(cuò)過精彩內(nèi)容來源:STM32單片機(jī)用于移相控制的全橋PWM變換器是中大功率DC-DC變換電路中最常用的電路之一,由于其可以實(shí)現(xiàn)開關(guān)管的軟開關(guān)特性,在數(shù)字電源的設(shè)計(jì)中被...
2021-08-09 09:21:21
U/F變換器和F/U變換器
體積小、成本低的優(yōu)點(diǎn),但是外圍元件較多,精度稍差些。模塊式變換器一般做成不可逆的專用變換器,通常將U/F和F/U設(shè)計(jì)成兩種獨(dú)立的模塊。其優(yōu)點(diǎn)是外圍元仵少,一般只有調(diào)零和調(diào)滿刻度的元件在集成塊的外面。本節(jié)以VFC100同步型U/F、F/U變換器和LMx31為例介紹U/F,F(xiàn)/U變換器。
2011-11-10 11:28:24
「分享」移相全橋DC-DC變換器建模及仿真
本篇我們將基于森木磊石自主研發(fā)的PPEC Workbench帶領(lǐng)大家進(jìn)行電路參數(shù)設(shè)計(jì),并利用Simulink進(jìn)行仿真模型搭建,驗(yàn)證移相全橋變換器的工作狀態(tài)。一、電路設(shè)計(jì)(一)拓?fù)湓O(shè)計(jì)之前的課程中
2023-12-04 11:12:41
【AT91SAM9261申請(qǐng)】大功率高頻移相全橋電動(dòng)汽車充電樁
/DC變換電路,因移相全橋ZVZCS PWM變換器集ZVS PWM變換和ZCS PWM變換的優(yōu)勢(shì)于一身,是目前最成功、應(yīng)用最普遍的一類軟開關(guān)全橋變換器,故選其作為充電電源的DC/DC變換電路。移相全橋
2016-05-23 15:41:54
【實(shí)操】移相全橋DC-DC變換器快速設(shè)計(jì)與開發(fā)
。一、移相全橋變換器設(shè)計(jì)與開發(fā)1、外圍電路設(shè)計(jì)與硬件平臺(tái)搭建1)外圍電路設(shè)計(jì)這里給出了PPEC-86CA3A移相全橋數(shù)字電源控制芯片的采樣、PWM驅(qū)動(dòng)以及硬件保護(hù)等外圍電路設(shè)計(jì)圖,大家可參考下圖進(jìn)行
2023-12-21 10:16:18
【羅姆SiC-MOSFET 試用體驗(yàn)連載】基于Sic MOSFET的直流微網(wǎng)雙向DC-DC變換器
項(xiàng)目名稱:基于Sic MOSFET的直流微網(wǎng)雙向DC-DC變換器試用計(jì)劃:申請(qǐng)理由本人在電力電子領(lǐng)域(數(shù)字電源)有五年多的開發(fā)經(jīng)驗(yàn),熟悉BUCK、BOOST、移相全橋、LLC和全橋逆變等電路拓?fù)洹N?/div>
2020-04-24 18:08:05
【資料】脈寬調(diào)制DC_DC全橋變換器的軟開關(guān)技術(shù)-阮新波嚴(yán)仰光-學(xué)習(xí)文檔PDF電子書資料
脈寬調(diào)制(PWM)DC/DC全橋變換器廣泛應(yīng)用于中大功率場(chǎng)合,因此研究其軟開關(guān)技術(shù)具有十分重要的意義。本書共分為八章,介紹電力電子變換器的基本類型和PWM DC/DC全橋變換器的基本工作原理,系統(tǒng)
2022-07-28 14:27:36
【轉(zhuǎn)】準(zhǔn)諧振軟開關(guān)雙管反激變換器
一種準(zhǔn)諧振軟開關(guān)雙管反激變換器。該變換器具有雙管反激變換器的優(yōu)點(diǎn),所有開關(guān)管電壓應(yīng)力鉗位在輸入電壓,因此,可選取低電壓等級(jí)、低導(dǎo)通電阻MOSFET以提高變換器的效率、降低成本。利用諧振電感與隔直電容
2018-08-25 21:09:01
不對(duì)稱半橋變換器講義
本講座將介紹最近研制的600W的不對(duì)稱半橋(AHB)直流變換器,采用ZVS軟開關(guān)技術(shù)減少器件的開關(guān)損耗資料來自網(wǎng)絡(luò)
2019-05-01 22:39:49
串聯(lián)諧振變換器
諧振網(wǎng)絡(luò)通常由多個(gè)無源電感或電容組成,由于元件個(gè)數(shù)和連接方式上的差異。常見實(shí)用的諧振變換器拓?fù)浣Y(jié)構(gòu)大致分為兩類:一類是負(fù)載諧振型,另一類是開關(guān)諧振型。負(fù)載諧振型變換器是一種較早提出的結(jié)構(gòu),注重電源
2020-10-13 16:49:00
為什么推挽變換器不像半橋變換器采取隔直電容的辦法解決磁通不平衡問題??
半橋變換器的隔直電容對(duì)變壓器偏磁的自動(dòng)平衡很巧妙,為什么推挽不能采取同樣的措施呢??學(xué)生party一枚剛學(xué)電源求解答?。?/div>
2017-03-16 22:14:38
利用AP的高頻推挽DC-DC變換器設(shè)計(jì)方案
摘要:為了適應(yīng)車載用電設(shè)備的需求,本文給出了一種高頻推挽DC-DC變換器設(shè)計(jì)方案。該方案采用推挽逆變-高頻變壓-全橋整流設(shè)計(jì)了24VDC輸入-220VDC輸出、額定逆變輸出功率600W
2018-09-29 16:43:21
功率變換器中的功率磁性元件分布參數(shù)
功率變換器中的功率磁性元件作用:起到磁能的傳遞和儲(chǔ)能作用,是必不可少的元件。特點(diǎn):體積大、重量大、損耗大、對(duì)電路性能影響大。挑戰(zhàn):對(duì)變換器功率密度影響很大,成為發(fā)展瓶頸。功率變換器技術(shù)與磁性元件拓?fù)?/div>
2021-11-09 06:30:00
雙向變換器
本人在做雙半橋雙向變換器,當(dāng)變換器工作與BOOST狀態(tài)時(shí),輸出電壓值總是打不到穩(wěn)態(tài)值。低壓側(cè)輸入電壓為24V,高壓側(cè)輸出電壓為100V,現(xiàn)在高壓側(cè)輸出電壓只有96V。不知道什么原因。跪求大俠解答,不勝感激。
2016-04-14 21:18:38
雙管正激變換器有什么優(yōu)點(diǎn)?
由于正激變換器的輸出功率不像反激變換器那樣受變壓器儲(chǔ)能的限制,因此輸出功率較反激變換器大,但是正激變換器的開關(guān)電壓應(yīng)力高,為兩倍輸入電壓,有時(shí)甚至超過兩倍輸入電壓,過高的開關(guān)電壓應(yīng)力成為限制正激變換器容量繼續(xù)增加的一個(gè)關(guān)鍵因素。
2019-09-17 09:02:28
反激變換器
大家好,我現(xiàn)在要設(shè)計(jì)一個(gè)電源,輸入范圍18-72,輸出24,300w功率,實(shí)現(xiàn)輸入輸出全隔離。要實(shí)現(xiàn)升降壓,所以想選擇反激變換器,現(xiàn)在有幾個(gè)問題1、反激變換器書上介紹只有在CCM模式下為升降壓模式
2016-12-04 18:31:07
反激變換器原理
是不需要輸出濾波電感(濾波電感在所有正激拓?fù)渲卸际潜匦璧模T诙噍敵鲭娫?,這一點(diǎn)對(duì)小變換器的體積。降低成本尤為重要) [hide][/hide]
2009-11-14 11:36:44
反激變換器的閉環(huán)控制
=oxh_wx3、【周啟全老師】開關(guān)電源全集http://t.elecfans.com/topic/130.html?elecfans_trackid=oxh_wx復(fù)習(xí)電力電子技術(shù)的時(shí)候想起來老師說過boost和反激變換器只能采用雙環(huán)控制,不能用單環(huán),原因上課講過但是沒認(rèn)真聽,所以來請(qǐng)教一下各位,謝謝大家了
2019-06-26 23:42:07
變壓器副邊有源箝位式ZVZCS FB PWM變換器主電路分析
變壓器副邊有源箝位式ZVZCS FB PWM變換器主電路分析分析了一種變壓器副邊采用有源箝位的ZVZCS全橋移相式PWM變換器的主電路拓?fù)浣Y(jié)構(gòu)。該變換器適合于高電壓、大功率(>10
2009-12-16 10:48:29
變形的半橋式變換器電路圖
變形的半橋式變換器電路圖對(duì)于高壓輸入,大功率輸出的情況下,一般采用如圖所示的電路方式。在電路中,開關(guān)器件V1、V2為一組,V3、V4為一組,雙雙串聯(lián),可減少單管耐壓值。在實(shí)際應(yīng)用電路中開關(guān)器件V1
2009-10-24 09:32:22
同軸變換器電路就能實(shí)現(xiàn)高效率的電路匹配
1所示。但是實(shí)際應(yīng)用中,線阻抗與負(fù)載不匹配時(shí),它們的阻抗變換不再簡(jiǎn)單看作1:4或1:9.本文通過建立模型,提出一種簡(jiǎn)化分析方法。
2019-07-09 06:28:08
同軸線變換器怎么分析?
介紹了一種分析同軸線變換器的新方法,建立了理想與通用模型,降低了分析難度和簡(jiǎn)化了分析過程。通過研究分析,提出了一種同軸變換器與集總元件相結(jié)合的匹配電路設(shè)計(jì)方法,通過優(yōu)化同軸線和集總元件的參數(shù),實(shí)現(xiàn)
2019-08-19 07:42:07
四個(gè)開關(guān)管按照兩個(gè)頻率進(jìn)行工作的全橋變換器
四個(gè)開關(guān)管按照兩個(gè)頻率進(jìn)行工作的全橋變換器,如下圖,這樣做有什么好處嗎?
2021-09-11 23:34:58
基于DC-DC變換器的推挽逆變車載開關(guān)電源電路設(shè)計(jì)方案
摘要:本文提出了一種推挽逆變車載開關(guān)電源電路設(shè)計(jì)方案。該方案在推挽逆變-高頻變壓器-全橋整流設(shè)計(jì)的基礎(chǔ)上,利用24VDC輸入-220VDC 輸出、額定輸出功率600W的DC-DC變換器,并采用
2018-09-29 16:55:57
基于SG3525和DC/DC變換器的大電流低電壓開關(guān)電源設(shè)計(jì)
與B之間的電壓uAB波形、霍爾電流傳感器輸出的反饋信號(hào)uf波形。圖5(a)表明電源的全橋變換器實(shí)際工作情況與理論相符,uAB波形正負(fù)半周對(duì)稱,由于變壓器存在漏感,因此uAB波形正負(fù)半周均存在一個(gè)復(fù)位
2018-10-19 16:38:40
基于開關(guān)磁阻電機(jī)系統(tǒng)的功率變換器設(shè)計(jì)
摘 要:開關(guān)磁阻電機(jī)驅(qū)動(dòng)系統(tǒng)(SRD)是一種新型無級(jí)調(diào)速系統(tǒng)。文章以開關(guān)磁阻電機(jī)的功率變換器為主要研究對(duì)象,重點(diǎn)分析了經(jīng)典的半橋型功率變換電路及一種新型的軟開關(guān)功率變換電路,并對(duì)其進(jìn)行了
2018-09-27 15:32:13
大??偨Y(jié)的反激變換器設(shè)計(jì)筆記
用的一種拓?fù)浣Y(jié)構(gòu)(Topology)。簡(jiǎn)單、可靠、低成本、易于實(shí)現(xiàn)是反激變換器突出的優(yōu)點(diǎn)。這篇文章覆蓋大部分現(xiàn)在反激變換器設(shè)計(jì)經(jīng)驗(yàn)點(diǎn),有需要的伙伴可以下載附件查閱參考學(xué)習(xí),同時(shí)也給各位一個(gè)福利,那就是張飛
2021-09-16 10:22:50
如何利用MC34152和CMOS邏輯器件設(shè)計(jì)一種可滿足以上要求的軟開關(guān)變換器驅(qū)動(dòng)電?
本文以升壓ZVT-PWM變換器為例,用集成芯片MC34152和CMOS邏輯器件設(shè)計(jì)了一種可滿足以上要求的軟開關(guān)變換器驅(qū)動(dòng)電路。
2021-04-22 06:45:34
如何對(duì)移相全橋諧振ZVS變換器進(jìn)行測(cè)試?
ZVS-PWM諧振電路拓?fù)涞碾娐吩砗透鞴ぷ髂B(tài)分析200W移相全橋諧振ZVS變換器關(guān)鍵參數(shù)設(shè)計(jì)如何對(duì)200W移相全橋諧振ZVS變換器進(jìn)行測(cè)試?
2021-04-22 06:25:56
如何用MC34152實(shí)現(xiàn)軟開關(guān)變換器高速驅(qū)動(dòng)電路的設(shè)計(jì)?
本文以升壓ZVT-PWM變換器為例,用集成芯片MC34152和CMOS邏輯器件設(shè)計(jì)了一種可滿足以上要求的軟開關(guān)變換器驅(qū)動(dòng)電路。
2021-04-22 06:09:47
如何設(shè)計(jì)一款低壓大電流直直變換器?
低壓大電流直直變換器的設(shè)計(jì)推挽正激電路應(yīng)用于變換器有什么優(yōu)點(diǎn)?
2021-04-21 06:21:35
實(shí)用電源技術(shù)叢書分享之 脈寬調(diào)制DC/DC全橋變換器的軟開關(guān)技術(shù)
實(shí)用電源技術(shù)叢書脈寬調(diào)制DC/DC全橋變換器的軟開關(guān)技術(shù)資料來自網(wǎng)絡(luò)資源
2019-11-17 22:25:04
小功率DC/DC變換器設(shè)計(jì)
本科畢業(yè)要設(shè)計(jì)什么樣的小功率DC/DC變換器才能過關(guān)啊,一u沒有大佬指點(diǎn)一下
2022-04-04 21:23:07
開關(guān)變換器的實(shí)用仿真與測(cè)試技術(shù)
,開關(guān)變換器控制系統(tǒng),仿真軟件簡(jiǎn)介,開關(guān)變換器仿真模型及其應(yīng)用,開關(guān)調(diào)節(jié)系統(tǒng)的測(cè)試技術(shù)。《開關(guān)變換器的實(shí)用仿真與測(cè)試技術(shù)》內(nèi)容豐富、新穎、系統(tǒng)、實(shí)用,反映了20世紀(jì)90年代以來國(guó)內(nèi)外學(xué)術(shù)界、工程技術(shù)界
2016-06-11 16:50:47
改進(jìn)級(jí)聯(lián)型多電平變換器拓?fù)?/a>
一種改進(jìn)的級(jí)聯(lián)型多電平變換器拓?fù)?/div>
2019-05-15 11:37:05
求一種基于升壓ZVT-PWM的軟開關(guān)變換器驅(qū)動(dòng)電路設(shè)計(jì)
本文以升壓ZVT-PWM變換器為例,用集成芯片MC34152和CMOS邏輯器件設(shè)計(jì)了一種可滿足以上要求的軟開關(guān)變換器驅(qū)動(dòng)電路。
2021-04-21 06:03:59
用于半橋諧振變換器的FSFR1600功率開關(guān)的典型應(yīng)用
用于半橋諧振變換器的FSFR1600功率開關(guān)(FPS)的典型應(yīng)用。 FSFR系列包括專為高效半橋諧振轉(zhuǎn)換器設(shè)計(jì)的高度集成的功率開關(guān)
2020-06-15 15:14:47
用于半橋諧振變換器的FSFR1700電源開關(guān)的典型應(yīng)用
用于半橋諧振變換器的FSFR1700電源開關(guān)(FPS)的典型應(yīng)用。 FSFR系列包括專為高效半橋諧振轉(zhuǎn)換器設(shè)計(jì)的高度集成的功率開關(guān)
2020-06-15 16:18:50
電池驅(qū)動(dòng)系統(tǒng)的DC-DC變換器選擇
何時(shí)刻,兩個(gè)開關(guān)管必須保證有一個(gè)開關(guān)管是導(dǎo)通的,即開關(guān)管的導(dǎo)通占空比不能小于0.5,導(dǎo)致兩個(gè)輸入電感總是有一個(gè)處于充電狀態(tài),輸入電流總是大于零,這意味著系統(tǒng)有一個(gè)最低輸出功率的限制?! ?b class="flag-6" style="color: red">一種電池全橋DC-DC變換器,電壓充電配電電路。原作者:作家的魂 電池BMS工程師趕路人
2023-03-03 11:32:05
移相全橋控制的問題
圖為阮新波的《全橋變換器的軟開關(guān)技術(shù)》,其中“3.5 整流二極管的換流情況”,在ip不能滿足副邊電流后,副邊的Lf強(qiáng)行續(xù)流,導(dǎo)致Dr2導(dǎo)通,進(jìn)而導(dǎo)致變壓器被短路。但是我有兩個(gè)問題1. 此時(shí)變壓器已經(jīng)
2018-12-18 10:37:46
論文分享《LLC詳談細(xì)談-新型LLC自驅(qū)動(dòng)半橋諧振變換器研究》
=oxh_wx3、【周啟全老師】開關(guān)電源全集http://t.elecfans.com/topic/130.html?elecfans_trackid=oxh_wx 論文分享《LLC詳談細(xì)談-新型LLC自驅(qū)動(dòng)半橋諧振變換器研究》資料來自網(wǎng)絡(luò)
2019-07-02 21:43:00
請(qǐng)問一下半橋LLC諧振變換器功率最大可以做多大???
請(qǐng)問一下半橋LLC諧振變換器功率最大可以做多大?。?/div>
2023-04-25 15:23:47
資料分享:LLC 諧振變換器的研究
摘要:高頻化、高功率密度和高效率,是 DC/DC 變換器的發(fā)展趨勢(shì)。傳統(tǒng)的硬開關(guān)變換器限制了開關(guān)頻率和功率密度的提高。移相全橋 PWM ZVS DC/DC 變換器可以實(shí)現(xiàn)主開關(guān)管的 ZVS,但滯后
2019-09-28 20:36:43
通過對(duì)一種正反激組合DCDC變換器的研究探討有源箝位技術(shù)的作用
通過對(duì)一種正反激組合DCDC變換器的研究探討有源箝位技術(shù)的作用
2009-03-27 15:55:36
一族新穎的橋式混合DC/DC變換器
一族新穎的橋式混合DC/DC變換器:介紹了一族橋式混合DC/DC變換器的拓?fù)浣Y(jié)構(gòu),并以其中一種為例分析工作原理,驗(yàn)證了該族變換器具有高效率堯高功率密度堯低電磁干擾,在全負(fù)載范圍內(nèi)
2009-06-20 08:46:2696
一種新穎的副邊控制型DC/DC半橋變換
提出一種新穎的副邊控制型DC/DC半橋變換器。該變換器從空載到滿載均能實(shí)現(xiàn)軟開關(guān),其中原邊開關(guān)管實(shí)現(xiàn)ZVS,副邊開關(guān)管實(shí)現(xiàn)ZCS。變換器優(yōu)越的輸出波形減小了輸出濾波器的體積。
2009-10-14 10:08:0720
采用變壓器次級(jí)輔助繞組的軟開關(guān)PWM三電平變換器
采用變壓器次級(jí)輔助繞組的軟開關(guān)PWM三電平變換器
摘要:提出一種新型的ZVZCSPWM三電平直流變換器,在變壓器的次級(jí)側(cè)附加
2009-07-07 10:38:12694
有限雙極性控制ZVZCSPWM全橋變換器
有限雙極性控制ZVZCSPWM全橋變換器
摘要:研究了一種有限雙極性控制ZVZCSPWM全橋變換器,分析了電路原理,給出了一個(gè)應(yīng)用實(shí)例
2009-07-14 17:51:561881
新穎的軟開關(guān)雙向DCDC變換器
提出了一種新穎的雙向 DCDC變換器 ,降壓時(shí)采用移相控制ZVZCSPWM全橋功率變換,控制簡(jiǎn)單,效率較高,升壓時(shí)采用帶變壓器隔離的Boost變換器,利用Boost變換器與推挽變換器的級(jí)聯(lián),通過
2011-08-11 16:44:51127
評(píng)論
查看更多