1 引言
??? 功率VDMOSFET晶體管以其開(kāi)關(guān)速度快、輸入電阻高、頻率特性好、驅(qū)動(dòng)能力高、跨導(dǎo)線性度高等特點(diǎn),廣泛應(yīng)用在空間系統(tǒng)的電源電路中。但它在空間輻射環(huán)境中極易被重離子誘發(fā)SEB,造成功率變換器或電源電壓的劇烈波動(dòng),可導(dǎo)致衛(wèi)星的電子系統(tǒng)發(fā)生災(zāi)難性事故。國(guó)外對(duì)功率VDMOSFET的SEB效應(yīng)研究較多。而我國(guó)起步較晚,在理論和實(shí)驗(yàn)上存在許多問(wèn)題。
??? 在此對(duì)功率MOSFET的SEB效應(yīng)的機(jī)理進(jìn)行了簡(jiǎn)單分析,并針對(duì)600 V平面柵VDMOSFET,利用半導(dǎo)體器件模擬軟件Medici研究了緩沖層對(duì)提高M(jìn)OSFET抗SEB能力的影響,提出利用多緩沖層結(jié)構(gòu)改善MOSFET抗SEB能力的方案,最后給出一組優(yōu)化后的多緩沖層結(jié)構(gòu)。
2 SEB機(jī)理以及仿真物理模型
2.1 單粒子燒毀機(jī)制
??? SEB效應(yīng)主要發(fā)生在器件阻斷狀態(tài),由轟擊到MOSFET發(fā)生SEB的原理如圖1所示。重離子轟擊產(chǎn)生的電子空穴對(duì)中的電子,在電場(chǎng)作用下向漏接觸區(qū)(Drain Contact)移動(dòng),而空穴則在漏電場(chǎng)作用下沿跡線向p體區(qū)(p-body)運(yùn)動(dòng),進(jìn)入p-body區(qū)之后,橫向運(yùn)動(dòng),最后經(jīng)p-body接觸區(qū)流出。由于橫向空穴流產(chǎn)生壓降,致使遠(yuǎn)離電極接觸區(qū)的p-body部分電位升高,造成p體區(qū)/n源極(p-body/n-source)結(jié)正偏,觸發(fā)寄生npn晶體管的發(fā)射極向漂移區(qū)注入電子。由于此時(shí)MOSFET處于高壓阻斷態(tài),電子的注入會(huì)改變空間電荷分布,造成電子在n漂移區(qū)/n+襯底(n-drift/n+-sub)高低結(jié)的積累,空間電荷區(qū)收縮,n-drift/n+-sub高低結(jié)處電場(chǎng)強(qiáng)度增加。隨著重離子轟擊強(qiáng)度增加,等離子體絲流增大,寄生npn晶體管發(fā)射結(jié)正偏程度增強(qiáng),n-drift/n+-sub高低結(jié)處電場(chǎng)強(qiáng)度越來(lái)越高。當(dāng)該電場(chǎng)增加到一定程度時(shí),會(huì)激發(fā)雪崩倍增效應(yīng),漂移區(qū)電流增大,進(jìn)而使寄生晶體管的發(fā)射結(jié)進(jìn)一步正偏,此正反饋效應(yīng)反復(fù)進(jìn)行,最終可導(dǎo)致器件因電流過(guò)大、溫度過(guò)高而燒毀。
?
??? 從SEB的失效機(jī)理可見(jiàn),抑制SEB效應(yīng)可從兩方面入手:①降低寄生晶體管的電流增益,削弱晶體管作用,主要包括背柵短路、進(jìn)行p+注入,增強(qiáng)源區(qū)下半導(dǎo)體導(dǎo)電能力、采用源區(qū)挖槽工藝,縮短源區(qū)寬度、減小寄生晶體管面積等:②優(yōu)化電場(chǎng)分布,提高n-drift/n+-sub高低結(jié)處雪崩倍增效應(yīng)發(fā)生的臨界電流。由于這方面的研究相對(duì)較少,且主要采用單緩沖層結(jié)構(gòu),故這里在單緩沖層仿真結(jié)果的基礎(chǔ)上,提出多緩沖層結(jié)構(gòu),并給出一組三緩沖層結(jié)構(gòu)的優(yōu)化結(jié)果。
2.2 MOSFET抗SEB能力優(yōu)化仿真的物理模型
??? SEB的物理機(jī)制和實(shí)驗(yàn)結(jié)果都表明,功率MOSFET的SEB效應(yīng)與其寄生晶體管VQ1的導(dǎo)通以及隨后器件的二次擊穿特性有重要關(guān)系,而與入射粒子的種類和劑量無(wú)直接關(guān)系,重離子的輻射只是一種觸發(fā)機(jī)制。因此,在SEB模型的建立中,可以將入射粒子的影響近似為它所引發(fā)的等離子體絲流在源極PN結(jié)上的偏壓。文獻(xiàn)通過(guò)將背柵短路的p源極和n源極分開(kāi),串聯(lián)不同的接觸電阻(Rp和Rn)來(lái)表征這種思想,如圖2所示,并經(jīng)實(shí)驗(yàn)研究和仿真驗(yàn)證了該方案的可行性。同時(shí)指出,器件的抗SEB能力直接由器件的二次擊穿特性決定。二次擊穿的電流和電壓越高,器件抗SEB能力越好。在此借鑒這種思想,通過(guò)器件仿真,明確緩沖層在抗SEB效應(yīng)中的作用,給出一種三緩沖層的優(yōu)化結(jié)構(gòu)。
?
?
??? 器件仿真中采用了濃度溫度相關(guān)載流子遷移率模型、SRH復(fù)合模型、Auger復(fù)合模型以及碰撞離化和禁帶變窄模型,暫未考慮熱效應(yīng)。為了更接近實(shí)際情況,采用IR 600VN的結(jié)構(gòu),分別取接觸電阻Rp=2.5kΩ,Rn=250Ω。
3 緩沖層提高抗SEB能力的作用
3.1 無(wú)緩沖層
??? 首先對(duì)普通無(wú)緩沖層MOSFET進(jìn)行了器件仿真,仿真結(jié)果如圖3所示,由圖可見(jiàn),器件的靜態(tài)I-V特性存在3個(gè)拐點(diǎn)。
?
??? (1)A點(diǎn)對(duì)應(yīng)正常PN結(jié)擊穿,此時(shí)漂移區(qū)完全耗盡,空間電荷區(qū)載流子濃度近似為本征激發(fā)濃度,p-body/n-drift界面處電場(chǎng)最大,達(dá)到臨界擊穿值,如圖3b,c所示;
??? (2)隨著漏電流Id的增加,漂移區(qū)載流子濃度增加,n-drift/n+-sub高低結(jié)附近出現(xiàn)電子積累,該處電場(chǎng)增強(qiáng),直到電子和空穴的濃度達(dá)到背景摻雜濃度,此時(shí)漂移區(qū)承受的電壓達(dá)到最高,為B點(diǎn)。Id繼續(xù)增大,漂移區(qū)載流子濃度繼續(xù)增高,“耗盡層”收縮,電子積累層展寬,漂移區(qū)電場(chǎng)降低,器件承受的電壓下降,出現(xiàn)“負(fù)阻區(qū)”。B點(diǎn)電流為負(fù)阻轉(zhuǎn)折臨界電流IB,該電流越大,進(jìn)入二次擊穿需要的臨界輻照強(qiáng)度越高,器件抗SEB能力越強(qiáng)。IB是表征器件抗SEB能力的一個(gè)重要標(biāo)志;
??? (3)當(dāng)Id增加到一定程度,n-drift/n+-sub高低結(jié)附近電場(chǎng)達(dá)到臨界擊穿電場(chǎng),發(fā)生二次擊穿,這就是C點(diǎn)。若C點(diǎn)電壓Uc高于器件反向阻斷時(shí)的工作電壓,則器件受輻照后不會(huì)誘發(fā)二次擊穿。因此Uc的高低,也是表征器件抗SEB能力的物理量,Uc越高,器件抗SEB能力越強(qiáng)。改善器件抗輻照能力,就是通過(guò)提高IB和Uc來(lái)實(shí)現(xiàn)。
由圖3c,d可見(jiàn),當(dāng)出現(xiàn)二次擊穿時(shí),漂移區(qū)載流子濃度達(dá)到1017cm-3,漂移區(qū)電場(chǎng)大幅降低,導(dǎo)致Uc很低。如果在襯底與外延層間加一濃度低于此值而高于耐壓層的過(guò)渡層即緩沖層,緩沖層的耗盡會(huì)改變電場(chǎng)分布,緩沖層選擇合理,就會(huì)使漂移區(qū)電場(chǎng)在達(dá)到二次擊穿時(shí)具有較高值,從而改善二次擊穿特性,亦即改善抗SEB能力,這就是緩沖層技術(shù)的思想。
3.2 單緩沖層技術(shù)
??? 對(duì)不同單緩沖層濃度下器件的靜態(tài)擊穿特性進(jìn)行了仿真,仿真結(jié)果如圖4所示。
?
?
??? (1)與無(wú)緩沖層結(jié)構(gòu)相比,單緩沖層MOSFET的擊穿特性曲線多了2個(gè)拐點(diǎn)E和F,E點(diǎn)對(duì)應(yīng)n漂移區(qū)/n緩沖層高低結(jié)擊穿電場(chǎng)達(dá)到最大,該點(diǎn)稱為二次擊穿點(diǎn);之后緩沖層耗盡層擴(kuò)展,直至n漂移區(qū)/n緩沖層界面附近過(guò)剩載流子濃度達(dá)到緩沖層背景摻雜濃度,這就是F點(diǎn)。
??? (2)隨著緩沖層厚度增加,E,F(xiàn)點(diǎn)間距增大;反之亦然。當(dāng)緩沖層厚度小到一定程度,E,F(xiàn)點(diǎn)重合。E,F(xiàn)兩點(diǎn)重合,可作為厚度優(yōu)化的一個(gè)參考。
??? (3)隨著緩沖層濃度減小,E點(diǎn)向B點(diǎn)移動(dòng)。當(dāng)緩沖層濃度低到一定程度,E點(diǎn)與B點(diǎn)重合,F(xiàn)點(diǎn)表觀取代B點(diǎn),此時(shí)漂移區(qū)過(guò)剩載流子濃度達(dá)到緩沖層背景摻雜濃度,由于緩沖層濃度高于外延層濃度,從而使負(fù)阻轉(zhuǎn)折臨界電流IB提高,從3.47x10-5A/μm提高到1.37x10-4A/μm。
??? (4)隨著緩沖層濃度增加,E點(diǎn)向電壓負(fù)方向移動(dòng),C點(diǎn)向電壓正方向移動(dòng)。當(dāng)緩沖層濃度增加到一定值,E點(diǎn)電位低于C點(diǎn)電位。E點(diǎn)的擊穿成為限制器件抗SEB能力的限制因素。因此,對(duì)于單緩沖層結(jié)構(gòu),存在一個(gè)最佳緩沖層濃度,由E,C兩點(diǎn)電壓相等獲得。若考慮厚度優(yōu)化(導(dǎo)通電阻優(yōu)化),則由C,E,F(xiàn) 3點(diǎn)重合得到一個(gè)仿真厚度。
3.3 多緩沖層技術(shù)
??? 采用緩沖層結(jié)構(gòu),可改善電場(chǎng)分布,提高器件抗SEB能力。但對(duì)單緩沖層結(jié)構(gòu),優(yōu)化緩沖層摻雜濃度,或使IB提高,或使Uc達(dá)到最佳,無(wú)法使兩者同時(shí)得到改善,有必要采用多緩沖層結(jié)構(gòu)。利用低摻雜濃度緩沖層提高IB,利用高濃度緩沖層提高Uc,這就是多緩沖層技術(shù)的思想。
?
??? 參考單緩沖層濃度優(yōu)化思想,對(duì)三緩沖層結(jié)構(gòu)進(jìn)行了仿真,結(jié)果如圖5所示。無(wú)緩沖層時(shí),IB=3.47×10-5A/μm,Uc=186 V;單緩沖層時(shí),IB=3.47×10-5 A/μm,Uc=355 V;三緩沖層時(shí),IB=1.03×10-3A/μm,Uc=536 V??梢?jiàn),與無(wú)緩沖層和單緩沖層相比,三緩沖層的IB和Uc均得到了很大改善。
4 結(jié)論
??? 緩沖層結(jié)構(gòu)可改善器件抗SEB能力:低摻雜濃度緩沖層有利于提高負(fù)阻轉(zhuǎn)折臨界電流,高濃度緩沖層更利于提高二次擊穿電壓。高、低濃度緩沖層結(jié)構(gòu)相結(jié)合,可使器件負(fù)阻轉(zhuǎn)折臨界電流和二次擊穿電壓均得到改善。根據(jù)這一構(gòu)想,給出一種三緩沖層結(jié)構(gòu),通過(guò)優(yōu)化摻雜濃度和厚度,使器件抗SEB效應(yīng)的綜合能力提高。仿真結(jié)果顯示,采用三緩沖層結(jié)構(gòu),二次擊穿電壓近似為無(wú)緩沖層結(jié)構(gòu)的3倍,負(fù)阻轉(zhuǎn)折臨界電流提高近30倍。
評(píng)論
查看更多